Reading Questions 7

page 45: Definition 2.27

page 45: Example 2.28

- 1. Let a be an element of a group. Then $a^{-2} = a^{-1}a^{-1}$.
- 2. Let a be an element of a group. Then $a^0 = 1$.
- 3. Let $a = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix}$ be an element in $GL(2, Z_3)$. Compute a^2 .

Section 2.3 Cyclic Groups and the Order of an Element (Part 1)

Cyclic Groups

- **P** 1. Let $G = (Z_5)^{\times}$ and a = 2. Compute a^3a^2 .
- **P 2.** Let $G = Z_5$ and a = 2. Compute a^3a^2 .
- **P** 3. Let G be a group such that $a \in G$. Let $m \in \mathbb{Z}$ and n = 0. Prove $a^m a^n = a^{m+n}$.
- **P** 4. Let G be a group such that $a \in G$. Let $m, n \in \mathbb{Z}$. Prove that $(a^n)^{-1} = a^{-n}$.
- **P** 5. Show that $(Z_7)^{\times}$ is cyclic by finding a generator for the group.
- **P** 6. Determine if S_4 is cyclic.