Reading Questions 6

page 43: Definition 2.23

page 43: Theorem 2.24 and its proof

- 1. If a and b are elements of a semigroup and ab = e where e is the identity element of the semigroup then a is a left inverse of b.
- 2. All semigroups are groups.
- 3. Do you have any concerns about the proof? Is the proof complete?

Section 2.2 Cancellation Properties (Part 1)

Properties of a Group

Definition

F a set S, a map $b: S \times S \to S$ is called a binary operation on S.

Definition

Assume that \circ is an associative binary operation on a set G. Then (G, \circ) is called a semigroup. In this case, we say G is a semigroup.

Theorem

Let G be an non-empty semigroup. Assume that G has a left identity and that every element of G has a left inverse. That is, there exists an element $e \in G$ such that, for every $a \in G$, ea = a, and, for every $a \in G$, there exists an element, denoted by a^{-1} , such that $a^{-1}a = e$. Then G is a group.

- **P** 1. Let G be a group such that $a, b, c \in G$. Prove if ba = ca then b = c.
- **P 2.** Prove: Let G be a group. For all $a, b \in G$, $(ab)^{-1} = b^{-1}a^{-1}$.

More Properties of a Group

- **P** 3. Show that $((Z_4)^{\times}, \cdot)$ is not a group.
- **P** 4. Prove: The group G is abelian if and only if $(ab)^{-1} = a^{-1}b^{-1}$ for all $a, b \in G$.