Reading Questions 22

page 132: Definition 6.6

page 133: Definition 6.8

(x+x)

1. A number $\binom{3}{2}$ is a binomial coefficient. T

$$\binom{n}{N} = \frac{n!}{N!(n-k)!}$$

2. A number $\binom{3}{2}$ is $\frac{2!}{3!(3-2)!}$.

3. Write the element of $\binom{[3]}{2}$?

و وربع ۶ , وربع ۶ , دهرع ۶ ک

Section 6.1 The Fundamental Counting Principle (Part 1)

FCP

P 1. Let G be a group such that $x, y \in G$. Let H be a subgroup of G. Show that yH = yH

P 2. Does the proof of Lagrange's theorem work for right cosets?

$$g. Hx = Hgx$$
 work g

for right cosets.

Thm: (FCP)

Let the group to act on the set 12 such that < 61.

Then

Let X be the distinct left cosets of Stab (\propto).

Define
$$\lambda: X \longrightarrow O_{\Omega}(x)$$
 such that

wts > is a 1-1 correspondence.

suppose
$$\lambda \left(x \text{ Stab}(x) \right) = \lambda \left(y \text{ Stab}(x) \right)$$

This shows that is I-1.

Suppose
$$\beta \in O_{\Lambda}(x)$$
. Then $\exists x \in G$ s.t.
 $x \cdot x = \beta$. So $\lambda (x \operatorname{stab}(x)) = x \cdot x = \beta$
This show λ is onto.
 $\therefore \lambda$ is a bijection and $|x| = |O(x)|$ and $|S_{\Lambda}(x)| = |G_{\Lambda}(x)| = |G_{\Lambda}(x)|$

Let Lagrange's thm)

Let La be a finite group s.t. H&b. Then

161=141.16:41.

```
Pf: Let 1 be the set of distinct left
cosets of H in b. Then be acts on I
 by g.xh = gxH where a,x & h.
Let yH, xH & 1 where yH + xH.
WTS. = geh s.t. gyH=xH, Let q=xy-! Then
  xy". yH = xy yH = xH. This shows &x & I
      O_{n}(x) = \Omega_{n}(x + x) = \Omega_{n}(x + x)
 Thus 10 (H) 1= 1111
  Moreover
             10 (H) /= 1 h: H)
                                  (1)
       Stab (H) = { g + 4 ; g . H = H}
 Now
                 = { g + G : gH = H }
                 => q + H
                 = H .
          | stab (H) | = 1H/.
                                (2)
  Thus
             10 (H) 1= 16: Stab (H) 1
:. FCP
     finite 161 = 10(H) 1. 1 stab (H) 1
                   = 1 6: H1. 1H1 by (1) ; (2)
```

lem: Let m and k be positive integers

where
$$n \ge k$$
, Then $\binom{n}{k} = \frac{n!}{k! (n-k)!}$

Let
$$L = S_n$$
 and $\Lambda = \begin{pmatrix} en3 \\ k \end{pmatrix}$. we know

$$\sigma \cdot \left\{ \times_{1}, \dots, \times_{K} \right\} = \left\{ \sigma(\times_{1}), \sigma(\times_{2}), \dots, \sigma(\times_{K}) \right\} \in \Omega$$
where $\sigma \in G = S_{n} \times_{i} \in \mathbb{I}^{n-1}$

$$(x, y,) (x_{2} y_{2}) \cdots (x_{K} y_{K}) \cdot \{x_{1}, \dots, x_{K}\} =$$

$$= \{\sigma(x_{1}), \dots, \sigma(x_{K})\}$$

$$= \{y_{1}, \dots, y_{K}\}$$

This shows
$$O(\{x_1, ..., x_N\}) = IL$$

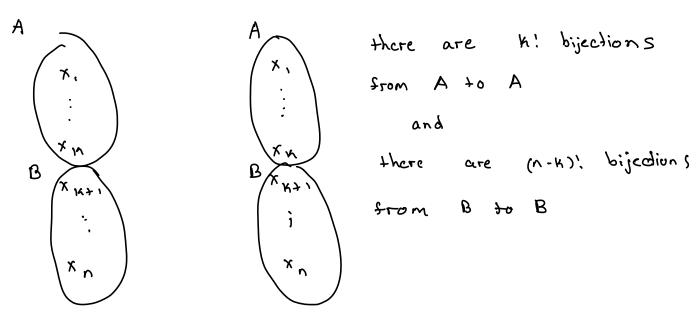
$$ID(\{x_1, ..., x_N\}) = IL | = (n | K)$$

By FCP
$$\binom{n}{k} = |G: Stab(\{x_1, ..., x_k\})|$$

(distinct

of left cosets of stab ({ x, , , ..., x, })

$$\frac{1}{n!} = |S_n| =$$



of Stab (
$$\{x_1, \dots, x_N, 3\}$$
) iff or maps A to A and maps B to B. Therefore $\{S_1, x_2, \dots, x_N, 3\}$ by $\{x_1, x_2, \dots, x_N, 3\}$

$$\therefore \quad \binom{K}{U} = \frac{K! \lceil V - K \rceil!}{U!}$$