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page 115: Theorem 5.13 and its proof

1. Let G be a group such that H is a subgroup of G. Then |G| divides |H|.

2. Let G be a group such that H is a subgroup of G. What is |G : H|?

Section 5.2 Lagrange Theorem (Part 1)

Lagrange Results

P 1. Let G = S5 and H =< (12) >. What is |G : H|?

P 2. Let G be a group such that |G| = n. Prove a
n = e.

P 3. Let G be a finite group such that H → K → G. Prove |G : K| · |K : H| = |G : H|.
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Lagrange's theorem
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