Reading Questions 21

page 115: Theorem 5.13 and its proof

1. Let G be a group such that H is a subgroup of G. Then |G| divides |H|.

2. Let G be a group such that H is a subgroup of G. What is |G:H|?

Lagrange Results

- **P 1.** Let $G = S_5$ and $H = \langle (12) \rangle$. What is |G:H|? **Ae** (A) **P 2.** Let G be a group such that |G| = n. Prove $a^n = e$.
- **P** 3. Let G be a finite group such that $H \leq K \leq G$. Prove $|G:K| \cdot |K:H| = |G:H|$.

5.Z

$$\frac{lem}{let h} = he a group such that $H \leq h and$

$$g \in h. Then \quad (HI = |Hg|.$$

$$\frac{pS.}{Define} \quad \sigma : H \rightarrow Hg \quad where \quad \sigma(h) = hg.$$
Then σ is clearly well defined.
Suppose $\sigma(h_{1}) = \sigma(h_{2}) \cdot Then \quad h, g = h_{2}g = 7 h_{1} = h_{2}$
This shows that σ is $h = 1$.
Let $y \in Hg$. Then by def of $Hg = he H s.t hg = y.$

$$\frac{def of \sigma}{def of \sigma}$$
Also $\sigma(h) = hg = y$. This shows that σ is onto.

$$\frac{def of \sigma}{def of \sigma} = y \cdot This shows (HI = IHg).$$$$

COF; [Hg.] = | Hg.]

$$Pf:$$
 $|Hg| = |H| e' |Hg_1 = |H| = 1 |Hg| = |Hg_2|$

(Logrange's theorem)
Thm: Let & be a finite group such that
$$H \leq h$$
,
Then $|h:H| = \frac{|h|}{|H|}$ or $|h| = |H| \cdot |h:H|$.

PS: We know G/H partitions by Hence

eor: Let to be a finite group such that
$$a \in b$$
.
Then $o(a)$ divides $|b|$.
 $p_{\overline{f}}$: $\langle a \rangle \leq \langle a \rangle$ so by previous that $|\langle a \rangle| |b|$.
 (a)

Cor: Let
$$u$$
 be a group such that $|u|$ is prime.
Then $u \cong \mathbb{Z}_p$.

Pf: WTS 4 is cyclic. Let e=x E G.

Consider (X7. By lagrange's Him

$$\frac{|u|}{|\langle x \times y \rangle|} = |u| : \langle x \times y \rangle| \in \mathbb{Z}, \quad \text{Since} \quad |u| \text{ is prime}$$

$$\frac{|u|}{|\langle x \times y \rangle|} \text{ is an integer} \quad |\langle x \times y \rangle| = p, 1,$$

$$|\langle x \times y \rangle| \text{ is not } 1 \text{ since } x \neq e, \therefore \quad |\langle x \times y \rangle| = p.$$
and
$$|u = \langle x \times y \rangle (\langle x \times y \leq u \rangle \text{ and } \quad |\langle x \times y \rangle| = |u| \rangle)$$

Thm: Let G be a finite group such that $H, K \leq G$. Then $|G:K| = |H: H \land K |$ iff G = HK.