Reading Questions 20

page 110: Definition 5.1

- 1. Let G be a group such that $x \in G$ and $H \subseteq G$. If Hx is a right cosets then H must be a subgroup of G.
- 2. Let G be a group such that $x \in G$ and $H \leq G$. Then Hx is a subgroup of G.

Section 5.1 Translation Action and Cosets (Part 1) $|H_x| = |H|$

Cosets

P 1. Let $G = S_4$ and $H = \langle (123) \rangle$. List the right cosets of H in G.

P 2. Let G be a group such that $H \leq G$ and $x, y \in G$. Prove Hx = Hy if and only if $yx^{-1} \in H$.

Index

- **P** 3. Let $G = S_4$ and H = <(123) >. What is |H:G|?
- **P** 4. Let $G = D_8$ and $H = \langle R_{90} \rangle$. List the left cosets of H in G.

5.\

$$\frac{E_{X'}}{H} = \left\{ R_{0}, R_{180} \right\} \quad H = \left\{ R_{180} \right\} \quad$$

Note: RoEHR qo => Hx is not a subgroup of G.

Lor: The distinct right cosets partition the group.

$$\frac{pS}{H} = The right cosets are orbits.$$

$$H \leq In \qquad H \qquad \Rightarrow H \qquad \Rightarrow H \qquad \Rightarrow H \qquad = H$$

lem: Let G be a group such that HSG and x, YEG.

(
$$\ll$$
) Let yet x . Let zet x . Then $\exists h_1, h_2, \epsilon H x$
s.t. $z = h_1 x$ and $y = h_2 x$. Hence $x = h_2^{-1} y$
 $z = h_1 h_2^{-1} y$ and $h_1 h_2^{-1} \epsilon H = 7 z \epsilon H y$. H $x \epsilon H y$
Let $z \epsilon H y$. Then $\exists h_1, h_2 \epsilon H$ s.t.
 $z = h_1 y$ and $y = h_2 x$. Hence $z = h_1 h_2 x = 7 z \epsilon H x$.
 \therefore $H x = H y$

<u>Pef:</u> Let \Box be a group such that $H \leq \Box$, the set of all distinct right cosets is \Box/H . The number of distinct right cosets is |G/H| or |G:H|is the index of H in G.

lem: Let be a group such that $H \le G$. Then (1) $|G: \{2e_3\} = |G|$

(2)
$$|G:G| = 1$$

(3) $|G:H| := # of left cosets of H$
 $\times H$

1Hg) = 1H1