Reading Questions 18

page 96: Definition 4.24,4.26,4.27

- 1. A relation of a set is a set. T
- 2. An equivalence relation of a set is a function. F
- 3. Consider the relation {{1,2}, {2,1}, {1,3}} on the set {1,2,3}. What element is missing from the relation that would make the relation symmetric?

23,13

Section 4.4 Orbits (Part 1)

Equivalence Relations

P 1. Prove or disprove: Let $a \sim b$ if $a, b \in \mathbb{Z}$ and $a \leq b$. Then \sim is an equivalence relation on \mathbb{Z} .

P 2. Let $a \sim b$ if $a, b \in \mathbb{Z}$ and $a \leq b$. Find cl(2).

Orbits

P 3. Let $G = S_7$. Let $H = \langle (23), (132) \rangle$ act on $\Omega = [7]$ where $h \cdot a = h(a)$ for $h \in H$ and $a \in \Omega$. What are the orbits of Ω ?

P 4. Let $\operatorname{GL}(n,\mathbb{R})$ act on $\operatorname{M}_{n\times n}(\mathbb{R})$ where $P \cdot A = PAP^{-1}$ for $P \in \operatorname{GL}(n,\mathbb{R})$ and $A \in \operatorname{M}_{n\times n}(\mathbb{R})$. What are the orbits of A?

P 5. Let $\operatorname{GL}(n,\mathbb{R})$ act on $\operatorname{M}_{n\times n}(\mathbb{R})$ where $P \cdot A = PA$ for $P \in \operatorname{GL}(n,\mathbb{R})$ and $A \in \operatorname{M}_{n\times n}(\mathbb{R})$. What are the orbits of A?

(2,1) & R 291 ≤ is not an eq. relation.

 E_{X} , Let X be the set of points in a plane. For $x, y \in X$ $x \sim y$ if x and y are the same distance from the origin. Then \sim is an equivalence relation.

$$X = R^2 = \{(x_1, x_2) : x_1, x_2 \in R\}$$

$$\sim := R_{K} = \{((x_{1}, x_{A}), (x_{3}, x_{A})) : \sqrt{x_{1}^{2} + x_{2}^{2}} = \sqrt{x_{3}^{2} + x_{4}^{2}} = K \}$$

$$\subseteq X \times X = R^{2} \times R^{3}$$

(reflexive)
if
$$(x_1, x_2) \in \mathbb{R}_K$$
 then $\int x_1^2 + x_2^2 = \int x_1^2 + x_2^2$
 $(x_1, x_2) \sim (x_1, x_2)$

$$(symmetric)$$
 $(x_1, x_2) \sim (x_2, x_1)$ since $\sqrt{x_1^2 + x_2^2} = \sqrt{x_2^2 + x_1^2}$

$$(transidive)$$
 suppose $(x_1, x_2) \sim (y_1, y_2) \in (y_1, y_2) \sim (z_1, z_2)$

+hen
$$\sqrt{x_1^2 + x_2^2} = \sqrt{\gamma_1^2 + \gamma_2^2}$$
 $\stackrel{?}{e} \sqrt{\gamma_1^2 + \gamma_2^2} = \sqrt{z_1^2 + z_2^2}$
= 7 $\sqrt{x_1^2 + x_2^2} = \sqrt{z_1^2 + z_2^2}$
= 7 $(x_1, x_2) \sim (z_1, z_2)$

Des: Let R be a relation on \mathbf{X} . Let $a \in \mathbf{X}$. Then $cl(a) = \{ x \in \mathbf{X} : (a, x) \in R \}$: class of a. IF R is an eq. relation then cl(a) is the equivalence class of a.

Then ~ is an equivalence relation on
$$\Lambda$$
.

$$p_{S}$$
:
(reflexive) $e_{G} \propto = \propto = 7 \propto \sim \propto$
(symmetric) suppose $\propto \sim B$

$$J_{gela} \quad s.f \qquad g. \quad x = \beta$$

$$g^{-1} \cdot g \cdot x = g^{-1} \cdot \beta$$

$$=7 \qquad g^{-1}g \cdot x = g^{-1} \cdot \beta$$

$$=7 \qquad e_{in} \cdot x = g^{-1} \cdot \beta$$

$$=7 \qquad x = g^{-1} \cdot \beta$$

(transitive) suppose
$$\alpha - \beta \notin \beta - \overline{z}$$
.
 $\exists g, h \in h \quad g, t \quad g, \alpha = \beta \notin h \cdot \beta = \overline{z}$
 $hg \cdot \alpha = h \cdot g \cdot \alpha = h \cdot \beta = \overline{z}$
 $Def:$ Let $G \quad act \ on \ \Omega$. The orbit of α is
 $O_{\mathcal{R}}(\alpha) = G \alpha = \{ \beta \in \Omega : \exists g \in h \ with \ g \cdot \alpha = \beta \}$
 $= \{ \beta \in \Omega : \alpha - \beta \}$
 $= cl(\alpha)$
Thm:
Let $G \quad act \ on \ \Omega$. Then the orbits partition Ω .

 $F_{x:}$ Let S_8 act on [8] where g. x = g(x).

Lonsider

 $(50), (123)7 = H = \{ e, (123), (50), (123)(50), (132), (132)(56) \}$

Then

stab_H (1) =
$$\{e, (56)\}$$

= $5 + ab(7)$
H
= $5 + ab_{H}(3)$
stab_H(4) = H = $5 + ab_{H}(7)$ = $5 + ab_{H}(8)$
H
Stab_H(5) = $\{e, (123), (132)\}$
= $5 + ab_{H}(6)$
H

and

$$O_{\mathcal{A}}(1) = \{1, 2, 3\} = O_{\mathcal{A}}(2) = O_{\mathcal{A}}(3) = O_{\mathcal{A}}(5) = \{5, 6\} = O_{\mathcal{A}}(6)$$
$$O_{\mathcal{A}}(4) = \{4\}, \quad O_{\mathcal{A}}(7) = \{7\}, \quad O_{\mathcal{A}}(8) = \{8\}$$

conjeture: $|H| = |stab_{H}(\alpha)| \cdot |O_{\mathcal{D}}(\alpha)|$