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page 96: Definition 4.24,4.26,4.27

1. A relation of a set is a set.

2. An equivalence relation of a set is a function.

3. Consider the relation {{1, 2}, {2, 1}, {1, 3}} on the set {1, 2, 3}. What element is missing
from the relation that would make the relation symmetric?

Section 4.4 Orbits (Part 1)

Equivalence Relations

P 1. Prove or disprove: Let a → b if a, b ↑ Z and a ↓ b. Then → is an equivalence relation on
Z.

P 2. Let a → b if a, b ↑ Z and a ↓ b. Find cl(2).

Orbits

P 3. Let G = S7. Let H =< (23), (132) > act on ! = [7] where h · a = h(a) for h ↑ H and
a ↑ !. What are the orbits of !?

P 4. Let GL(n,R) act on Mn→n(R) where P ·A = PAP
↑1 for P ↑ GL(n,R) and A ↑ Mn→n(R).

What are the orbits of A?

P 5. Let GL(n,R) act on Mn→n(R) where P · A = PA for P ↑ GL(n,R) and A ↑ Mn→n(R).
What are the orbits of A?
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Def An equivalence relation on a non empty set I

is a relation R that has the following property

117 at a a E R

1 a be a b ER b a E R

s a b c x ̅ a b b c ER a c R

EI consider 2 and 2 Z

11 27 E R since 1 2 a a



12 1 R 2 41 is not an ea relation

EI Let be the set of points in a plane For

X Y EI x y if x and y are the same distance

from the origin Then is an equivalence relation
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Def Let R be a relation on x ̅ Let a E I Then

c a x ̅ la x ER class of a

If R is an eq relation then d a is the



equivalence class of a

Ex From the previous example c 0 1 R
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Itmi Let be an eq relation on Then

the eq classes partition I

I see board

Iem Let G act on 1 Let α B E R Define

α β if get such that g α β

Then is an equivalence relation on 1
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transitive suppose α B B I
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Def Let act on 1 The orbit of α is

On 1 Gx BER geh with g α β
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c d

Th
Let act on 1 Then the orbits partition 1

Ex Let so act on where g g x

consider
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