Reading Questions 16

page 88: Definition 4.9

page 88: Definition 4.10

- 1. A regular action is a group action. \neg
- 2. A translation action is a group action for a group G acting on itself.
- 3. Let G be a group and let H be a subgroup of G. Write the translation action.

Section 4.1 Group Actions (Part 2)

More Examples

P 1. Let $G = Z_4$. Use the regular action to compute $2 \cdot 3$.

P 2. Let $H \leq G$ such that $h \in H$ and $g \in G$. Does $h \cdot g = gh$ define a group action for H acting on G?

P 3. Does $g \cdot h = g^{-1}h$ define a group action for G on to G?

P 4. Let $G = Z_6$. Let H = <3 > and g = 2. Write the elements of gHg^{-1} .

 $\langle x7$

$$G \quad acts \quad on \quad \Pi$$

$$(o) \quad \forall g \in G \quad \forall \alpha \in \Omega \quad g.\alpha \in \Pi$$

$$(i) \quad \forall \alpha \in \Pi \quad e_{G} \cdot \alpha = \alpha$$

$$(2) \quad \forall g,h \in G \quad g.(h.\alpha) = gh.\alpha$$

Def: The group action of
$$4$$
 on $\frac{1}{2}$,
 $g \cdot x = gx$ is called a regular action.

$$(a) \quad g \cdot x = g \times \in bi$$

$$(b) \quad e_{a} \cdot x = e_{a} \times = \times$$

$$(a) \quad h \cdot (g \cdot x) = h \cdot (g \times) = hg \times = hg \cdot x$$

<u>Def:</u> The group action of $H \leq 4$ on 4, $h \cdot g = hg$ is called a translation action.

(o)
$$\forall heH \forall geH h \cdot g = hg \in H$$

(i) $e_{H} = e_{H} = 7$ $e_{H} \cdot g = e_{H}g = e_{H}g = g$
(a) $\forall h_{1,3}h_{a} \in H \quad \forall g \in h7$ $e h$
 $h_{1} \cdot (h_{a} \cdot g) = h_{1} \cdot (h_{a}g) = h_{1}h_{a}g$
 $= h_{1}h_{a} \cdot g \quad (H \leq H)$

Def: The group action of 4 on 4, g.h = ghg⁻¹ is called a conjugate action.

11)
$$e_{\alpha} \cdot h = e_{\alpha} h e_{\alpha} = e_{\alpha} h e_{\alpha} = e_{\alpha} h = h$$

$$(2) g_{1}, g_{2} \in h \quad h \in H$$

$$g_{1} \cdot (g_{2} \cdot h) = g_{1} \cdot g_{2} \cdot g_{2}^{-1}$$

$$= g_{1} g_{2} h g_{2}^{-1} (h : s \in group)$$

$$g_{2}^{-1} g_{1}^{-1} = g_{1} g_{2} h (g_{1} g_{2})^{-1}$$

$$= g_{1} g_{2} h (g_{1} g_{2})^{-1}$$

$$= g_{1} g_{2} \cdot h$$

$$\frac{1)ef'}{gek}$$
Let be a group such that $H \leq 4$ and
 gek . Then $gHg'' = 2$ $ghg'' : h \in H^{2}$
 $Ex:$ Let $b = 2a$ and $H = \langle 27 \rangle$. Then
Let $1 = g$ $g'' = 3$ $1 + 3 = 0$ mod A $H = \{2, 0\}$
 $1 + 3 = 1 \leq 0, 2 \leq 3$
 $= \{0, 2 \}$

Def: The group action of 4 on K:= set of all subgroups
of 4
Then
$$g \cdot H = gHg^{-1}$$
 is called a conjugate action
on the subgroups of 4.
(o) $\forall g \cdot 4$ $H \in K$ $g \cdot H = gHg^{-1} \in K$
(i) $e_{ix} \cdot H = eHe^{-1} = eHe = H$ $ehe = h$
(i) $g \cdot 2 \cdot 4 = g \cdot (g + 3 \cdot 2) = g \cdot 3 \cdot 4 \cdot 9 \cdot 9 \cdot 10^{-1}$
 $g \cdot 3 \cdot 9 \cdot 4 = g \cdot (g + 3 \cdot 2) = g \cdot 3 \cdot 4 \cdot 9 \cdot 9 \cdot 10^{-1}$
 $g \cdot 3 \cdot 9 \cdot 4 = g \cdot (g + 3 \cdot 2) = g \cdot 3 \cdot 4 \cdot 9 \cdot 9 \cdot 10^{-1}$
 $g \cdot 3 \cdot 9 \cdot 4 = g \cdot (g + 3 \cdot 2) = g \cdot 3 \cdot 4 \cdot 9 \cdot 9 \cdot 10^{-1}$
 $g \cdot 3 \cdot 9 \cdot 4 = g \cdot (g + 3 \cdot 2) = g \cdot 3 \cdot 4 \cdot 9 \cdot 9 \cdot 10^{-1}$
 $g \cdot 3 \cdot 9 \cdot 4 = g \cdot (3 \cdot 3 \cdot 2) = g \cdot 3 \cdot 4 \cdot 9 \cdot 10^{-1}$
 $g \cdot 3 \cdot 9 \cdot 4 = g \cdot (3 \cdot 3 \cdot 2) = g \cdot 3 \cdot 4 \cdot 9 \cdot 10^{-1}$
 $g \cdot 3 \cdot 9 \cdot 4 = g \cdot (3 \cdot 3 \cdot 2) = g \cdot 3 \cdot 4 \cdot 9 \cdot 10^{-1}$
 $g \cdot 3 \cdot 9 \cdot 4 = g \cdot (3 \cdot 3 \cdot 2) = g \cdot 3 \cdot 4 \cdot 9 \cdot 10^{-1}$
 $g \cdot 3 \cdot 9 \cdot 4 = g \cdot (3 \cdot 3 \cdot 2) = g \cdot 3 \cdot 4 \cdot 9 \cdot 10^{-1}$
 $g \cdot 3 \cdot 9 \cdot 4 = g \cdot (3 \cdot 3 \cdot 2) = g \cdot 3 \cdot 4 \cdot 9 \cdot 10^{-1}$
 $g \cdot 3 \cdot 9 \cdot 4 = g \cdot (3 \cdot 3 \cdot 2) = g \cdot 3 \cdot 4 \cdot 10^{-1}$
 $g \cdot 3 \cdot 9 \cdot 4 = g \cdot (3 \cdot 3 \cdot 2) = g \cdot 3 \cdot 10^{-1}$
 $g \cdot 3 \cdot 9 \cdot 4 = g \cdot 10^{-1}$
 $g \cdot 3 \cdot 9 \cdot 4 = g \cdot 10^{-1}$
 $g \cdot 3 \cdot 9 \cdot 4 = g \cdot 10^{-1}$
 $g \cdot 3 \cdot 9 \cdot 4 = g \cdot 10^{-1}$
 $g \cdot 3 \cdot 9 \cdot 4 = g \cdot 10^{-1}$
 $g \cdot 3 \cdot 4 = g \cdot 10^{-1}$
 $g \cdot 3 \cdot 4 = g \cdot 10^{-1}$
 $g \cdot 3 \cdot 4 = g \cdot 10^{-1}$
 $g \cdot 3 \cdot 4 = g \cdot 10^{-1}$
 $g \cdot 3 \cdot 4 = g \cdot 10^{-1}$
 $g \cdot 3 \cdot 4 = g \cdot 10^{-1}$
 $g \cdot 3 \cdot 4 = g \cdot 10^{-1}$
 $g \cdot 3 \cdot 4 = g \cdot 10^{-1}$
 $g \cdot 4 = g \cdot 10^{$