Reading Questions 14

page 78: Definition 3.5

- T 1. Let $\sigma \in S_n$. Then σ is an even permutation if $o(\sigma)$ is even.
- 2. The cycles $(12) \in S_4$ is a odd permutation.
- 3. Is the permutation $(12)(24)(12) \in S_4$ even or odd? 099

Section 3.2 Alternating Groups (Part 1)

τ

Properties

- **P** 1. Write (123)(2345)(321) as a product of 2-cycles.
- **P 2.** Let $\sigma, \tau \in S_n$. Prove or disprove. If σ and τ are both odd then $\sigma\tau$ is even.
- **P** 3. List the elements of A_4 .
- **P** 4. Determine if $(123)(4567) \in A_8$.
- **P 5.** Prove that A_n can be generated by all 3-cycles in S_n .

Recall

~

$$(2345) = (25)(29)(23)$$
 method 1
= $(23)(39)(45)$ method 2

$$\frac{pf:}{\sigma = i_1 i_2 \cdots i_{2n}} = j_1 \cdots j_{2r}$$

$$\frac{pf:}{\sigma = i_1 i_2 \cdots i_{2n}} = z_1 \cdots z_{2r}$$

$$\frac{z_{k+2r} = z_{k+r}}{z_{k+2r} = z_{k+r}}$$

$$\sigma = i_1 i_2 \cdots i_{2n} j_1 \cdots j_{2r}$$
which has an even # of 2-eycle

DeS: Let n be a positive integer and greater than 1 and A_n be the set of all even permutation of S_A .

$$E_{\underline{X}}$$
: $A_3 = \{(12)(12), (12)(23)\}$

Thm: $A_n \leq S_n$ n > 1

$$P^{S:}$$
 An \subseteq Sn clearly (

1) (12) (12) =
$$e$$
 Hence $e \in A_n$

- 2) associativity Sollows from Sn
- 3) O, TEAn then O, T are even. By the previous OT is even. Hence An is dosed.

A)
$$\sigma = (i_1 i_2) (i_1 i_3) \cdots (i_n i_m)$$
 m- is even

then
$$\sigma' = (i_1 i_m) (i_1 i_{m-1}) \cdots (i_n i_n) (i_n i_n)$$

since
$$\sigma\sigma^{-1} = \sigma^{-1}\sigma^{-1}e$$

Thm: No permutation is both even and odd

cor: Let n be an integer greater than I. Then

 $|A_n| = \frac{1}{2}|S_n| = \frac{n!}{2}$