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1. Let A and B be groups. Then AB = {ab|a → A, b → B}.

2. Let A and B be subgroups of G. Then AB ↑ G.

3. Let A =< 2 >,B =< 3 > and G = Z6. Write the elements of BA.

Section 2.6 Subgroups (Part 2)

special subgroups

P 1. Let X = {(R0, R180)} and G = D8 ↓D8. Find CG(X).

P 2. Let G be a group such that H,K ↔ G. Prove H ↗K ↔ G.

P 3. Let G and H be groups, and let ω : G ↘ H be a homomorphism. The set {x → G | ω(x) =
e} is called the kernel of ω and is denoted by ker(ω). Prove ker(ω) ↔ G.

P 4. Let G be a group, let H ↔ G and let x → G. Prove {xhx→1 | h → H} ↔ G.
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