Reading Questions 12

page 69: Definition 2.79

- 1. Let A and B be groups. Then $AB = \{ab | a \in A, b \in B\}$.
- 2. Let A and B be subgroups of G. Then $AB \subseteq G$.
- 3. Let $A = \langle 2 \rangle, B = \langle 3 \rangle$ and $G = Z_6$. Write the elements of BA.

Section 2.6 Subgroups (Part 2)

special subgroups

P 1. Let $X = \{(R_0, R_{180})\}$ and $G = D_8 \times D_8$. Find $C_G(X)$.

P 2. Let G be a group such that $H, K \leq G$. Prove $H \cap K \leq G$.

P 3. Let G and H be groups, and let $\phi : G \to H$ be a homomorphism. The set $\{x \in G \mid \phi(x) = e\}$ is called the kernel of ϕ and is denoted by ker (ϕ) . Prove ker $(\phi) \leq G$.

P 4. Let G be a group, let $H \leq G$ and let $x \in G$. Prove $\{xhx^{-1} \mid h \in H\} \leq G$.

2.6 Let be a group and acts. Then car = G.

{1,2,33 \$ {13 \$ {13 } {1

Ex: Let x = [3] and P := contains 1.

Then $\xi_{1,3}$ is the smallest subset of X which contain P. if $1 \in Y \subseteq X$ then $\xi_{1,3} \subseteq Y$.

pf.
Let H be the smallest subgroup of 4 which
contains a. we know
$$\langle a \rangle \in 4$$
 and $a \in \langle a \rangle$.
WTS $\langle a \rangle \in H$. Since $H \leq 4$ and $a \in H$ it follows
that $a, a^2, a^3, \ldots \in H$ since H is closed,
Hence $\langle a \rangle \in H$, $\vdots \langle \langle a \rangle = H$,

$$\frac{\text{Def:}}{(X7)} = \text{the subgroup and let } X \leq 4. \text{ Then}$$

$$(X7) := \text{the subgroup generated by } X_1 \text{ is the smallest subgroup containing all elements of } X_1.$$

Ex: Let
$$x = \{0_{j}2\}$$
 and $u = Z_{q}$. Then
 $\langle x \rangle = \langle 2 \rangle = 20, 23$

 E_{π} : Let $X = \{R_{180}, H\}$ and $L = D_8$. Then

$$\langle \chi \rangle = \{R_0, R_{180}, H_1, R_{180}, H = HR_{180} = V, VR_{180} = H = R_{190}V = H$$

 $VH = HV = R_{180}\}$

by construction
$$(x7)$$
 is closed
 $R_0 \in \zeta \times 7$
by $G \quad \zeta \times 7$ is associative
 $\forall \gamma \in \zeta \times 7 \quad o(\gamma) = 2 = 7 \quad \gamma^{-1} = \gamma = 7 \quad \zeta \times 7$ has all inverses
 $\gamma \neq e = R_0$
 $\therefore \quad \zeta \times 7 \quad is a subgroup of ζ_7 .$

Def:
Let b be a group and
$$X \subseteq G$$
.
 $L_{G}(X) = \{ X \in G : X = a \times \forall a \in X \}$
:= the centaralizer of X

$$E_{\underline{x}}$$
: Let $x = \{0, 1\}$ and $G = Z_q$. Then

$$C_{g}(x) = G_{g}(x)$$
 since $G_{g}(x)$ abelian.

Ex:

Then

Let
$$X = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} \end{bmatrix}$$
 and $U = U \left(2, \mathbb{Z}_3 \right).$
 $\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 2 & 2 \\ 1 & 2 \end{bmatrix} \right\} \subseteq C_{\mathcal{H}}(X)$

$$\begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = 7 \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 0 & 1 \end{bmatrix}$$

Then:
Let h be a group such that $X \leq t_1$. Then
 $C_{t_1}(X) \leq t_1$.
 $p_1^{2^{-1}}$
 $(X) \leq t_1$.
 $p_2^{2^{-1}}$
 $(X) = t_1(X) = clear = a \in X$ then $e_a = a e_{t_1} = a$
 $(X) = v_1 \otimes C_{t_1}(X)$. Then $v_a = av = v_a + X$
and $w_a = aw = v_a + X$.
Hence $v_w = v_a = av = v_a + X$.
Hence $v_w = v_a = av = v_a + v_a + X$.
 $(X) = t_1 \otimes C_{t_1}(X) = v_1 \otimes v_1^{-1} \otimes C_{t_1}(X)$
 $(X) = av = v_a = x_1 \otimes v_1^{-1} \otimes v_1^{-1} \otimes C_{t_1}(X)$
 $v_a = av = v_a = x_1 \otimes v_1^{-1} \otimes v_1^{-1}$

(4) associativity follow since G is a group