Reading Questions 11

page 61: Definition 2.60

page 62: Lemma 2.63 and its proof

- 1. If H is a subgroup of G then the identity element of G is the identity element for H. T
- 2. If G is a group then the empty set is a subgroup of G. \mathbf{F}
- 3. If G is a group then G is a subgroup of G. T
- 4. Let (G, \cdot) be a group, and let H be a non-empty subset of G. The subset H is a subgroup of G if (H, \cdot) is a group. Why does H need to be nonempty in this definition?

Section 2.6 Subgroups (Part 1)

subgroups

P 1. List all the subgroups of D_8 .

P 2. Prove or disprove: $(\{0, 1, 2, 3, 4, 5\}, +)$ is a subgroup of Z_8 .

P 3. Prove the following statement. Let G be a group and let H be a nonempty subset of G. If $ab^{-1} \in H$ for all $a, b \in H$ then H is a subgroup of G.

minimal subgroups

P 4. Let X = [5] and P := contains only even numbers. Does X have a smallest subset containing P? If so, what is it?

P 5. Let $X = \{R_{180}, D\}$ and $G = D_8$. Find $\langle X \rangle$.

$$x_{2}$$
 x_{2} x_{3} x_{2} x_{3} x_{3

Thm: Let G be a group. Then deby,
$$az \leq 4$$

since $az > az > bz$

This list is complete! If H is a subgroup of Zq

 $0 \in H$. If $i \in H$ then $H = \langle i \rangle = Z_q$. Similarly if $3 \in H$ then $3^{-1} \in H$. Hence $\langle i \rangle = \langle 3 \rangle = H = Z_q$. If $2 \in H$ then $H = \langle 2 \rangle$. Or $H = \langle 0 \rangle$.

Ex: Let
$$H = \{0, 2, 3, 5\}$$
. Then H is not a subgroup of
 $Z_{\mathcal{A}}$ since $2+3=1 \notin H$. This shows that H is
not closed => H is not a group.

lem: Let G be a group and let $\beta \neq H \subseteq G$. Then H \leq G iff (1) H is closed (2) \forall het $h' \in H$.

pf: (=>) wis that H is closed and theH, hieH,

Assume H is a subgroup of G. Then H is a group. Hence H is closed and thet h'ett,

(2) closed : by hyp

(3) inverse : by hyp

(A) associativity: since 4 is a group

Let h,geH. Then
$$(hg)^2 = hghg$$

= hhgg since 6 is abelian
= h^3g^2
= e_ge_g since h,geH
= e_g_g

Hence hgeH. Now $h^2 = e_{ig}$ since heH => $hh = e_{ig}$ => $h^{-1}hhh^{-1} = h^{-1}e_{ig}h^{-1}$ => $e_{ig}e_{ig} = h^{-1}h^{-1}$ => $e_{ig} = (h^{-1})^2$.

Therefore h't H and by the previous result H 4 G.