Reading Questions 10

page 59: Definition 2.55

AXB = Ela, b) 1 acA, beB3

page 59: Lemma 2.56 and its proof

- 1. The direct product of two set is a set. \mathbf{T}
- 2. The direct product of two groups is a group. \mathcal{T} $(g', h') = (g, h)^{-1}$ 3. Let G and H be groups with identity elements e_G and e_H respectively. What is the identity element in $G \times H^2$ element in $G \times H$?

Section 2.5 Direct Products (Part 1)

Direct Products

- **P** 1. Write the multiplication table for $Z_2 \times Z_2$.
- **P 2.** Let $(1,2) \in Z_2 \times Z_3$. What is o((1,2))?

۸ *۱*.

- **P** 3. Find a group that is isomorphic to $Z_2 \times Z_2$.
- **P** 4. Find groups G and H such that |G| = |H| = 25 but G is not isomorphic to H.
- **P 5.** Suppose $G \times H$ is abelian. Prove that G and H are abelian.

$$\frac{1 \text{ em}}{4 \text{ k} \text{ H}} = \frac{1}{2} (0,0), (0,1), (1,0), (1,1)} = \frac{1}{2} \text{ m}}{2} \text{ m} = \frac{1}{2} (0,0), (0,1), (1,0), (1,1)} = \frac{1}{2} \text{ m}}{2} \text{ m} = \frac{1}{2} (0,0), (0,$$

Thm: Let $(a,b) \in G \times H$. Then o(a,b) = lem(o(a), o(b)).

WTS if
$$(a,b)^{H} = (e_{H},e_{H})$$
 then $H \ge M$.

$$(a_{j}b)^{K} = |e_{Hj}e_{H}|$$
. Then $K \mid m$ by previous results.
 $(a_{j}b^{K}) = (e_{Kj}e_{H}) = 7$ $o(a) \mid K$ and $o(b) \mid K$ b_{γ}
previous results.

K is a common multiple of
$$o(a)$$
 and $o(b)$.
 $K \ge lem(o(a), o(b))$.

Note: 16×H = 161.1H

Ex: Find two groups of order 99 which are not isomorphic. $(Z_{qq}, +)$ $(Z_3 \times Z_{33}) = |Z_3| \cdot |Z_{33}| = 3.33 = 99$ $1 \in Z_{qq}$ o(1) = 99 if $Z_3 \times Z_{33}$ is cyclic then $\exists (a,b) \in Z_3 \times Z_{33}$ s.t o((a,b)) > 299 o((a,b)) = 1cm (o(a), o(b)) = 1cm (10r3) 10r3 or 110r33) $\neq 99$ $\therefore Z_3 \times Z_{33}$ is not cyclic Since Z_{qq} is cyclic and $Z_3 \times Z_{33}$ is not cyclic

Zqq 7 Z3×Z33.