Reading Questions 9

page 55: Definition 2.51

page 56: Lemma 2.52 and its proof

- 1. A homomorphism is a map. τ
- 2. Let a and b be inverses of each other in some group. Then ab = e by the cancellation property for groups.

Ð

3. Let $\phi: (Z_5^{\times}, \cdot) \to (Z_4, +)$ be a homomorphism. What is $\phi(1)$?

Section 2.4 Isomorphisms (Part 1)

Homomorphisms

P 1. Define a homomorphism from Z_4 to D_8 .

P 2. Show that the map $\phi: Z_3 \to (Z_5)^{\times}$ such that $\phi(0) = 1, \phi(1) = 2$ and $\phi(2) = 4$ is not a homomorphism.

P 3. Give an example of an abelian group G, a non abelian group H, and a homomorphism $\phi: G \to H$.

Isomorphisms

P 4. Let $G = Z_4$ and $H = (Z_5)^{\times}$. Show that $G \cong H$.

Theorem

Let G and H be groups such that $\phi: G \to H$ is an isomorphism. Then G is abelian if and only if H is abelian. Moreover, $\forall x \in G, o(x) = m$ if and only if $o(\phi(x)) = m$ where m is a positive integer.

P 5. Use the previous theorem to show that D_8 is not isomorphic to Z_8 .

P 6. Is Z_6 isomorphic to $(Z_7)^{\times}$?

Ex:

$$\left(\begin{array}{c} Z_{4}, + \end{array}\right) \\ \left(\begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \end{array}\right) \\ \left(\begin{array}{c} 0 \\ 2 \\ 3 \\ 3 \end{array}\right) \\ \left(\begin{array}{c} R_{40} \\ R_{40} \\ R_{160} \\ R_{270} \\ R_{270} \\ H \\ V \\ 0 \\ D \\ p \end{array}\right)$$

Q is a homomorphism

<u>Defi</u> Let the and H be groups. A map Q: tr-7His an isomorphism if Q is a bijection and a homomorphism. $L \cong H$ the is isomorphic to H.

Ex: Consider
$$Z_q$$
 and $\langle R_{q_0} \rangle$ where $R_{a_0} \in P_g$.
 $0 : \frac{1}{1} = 0$ $R_0 = (R_{a70})^3$
 $1^2 = 2$ $R_{180} = (R_{270})^2$
 $1^2 = 3$ $R_{180} = (R_{270})^2$
 $1^2 = 3$ $R_{270} = (R_{270})^2$
 $R_{270} = (R_{270})^1$
is an isomorphism. 0 is clearly a bijection.
 $T_q = (17)$ $0 (1^i + 1^j) = 0(1^i) + 0(1^j)$
 $= 0 (1^{i+j})$.
 $0 (1^{i+1^j}) = 0(1^{i^j}) + 0(1^{i^j})$
 $= (R_{270})^{i+j}$
 $= (R_{270})^i (R_{270})^j = 0(1^i) 0(1^j)$
That: Let G and H be Sinite cyclic groups
such that $|G_q| = |H|$. Then $G \cong H$,

$$p: Let Li = \langle a \rangle \quad and \quad H=\langle b \rangle. \text{ Then}$$

$$Q: Li = H \quad as \quad Q(a^{i}) = b^{i} \text{ is an isomorphism.}$$

$$Q(a^{i}) = Q(a^{i}) = 7 \quad a^{i} = a^{j} - 1 - 1$$

$$Q(a^{i}) = b^{i} - 0 = 0 = 0$$

$$Q(a^{i+s}) = Q(a^{i+s}) = b^{i+s} = b^{i} = b^{j} = 0(b^{i}) \quad Q(b^{s})$$

Thm: Let & and H be groups such that Q: 67-7 H is an isomorphism.

Then (1)
$$\mu$$
 is abelian \notin H is abelian
(2) \forall xe μ O(x) = m \notin O(Q(x)) = m .

and

$$a(ba) = a(b) a(a)$$
. Since $ab = ba$ $a(ab) = a(ba)$.
Thus
 $a(a) a(b) = a(b) a(a)$. Let $h_1h_2 \in H$.
Then $\exists g_1, g_2 \in G$ such that $a(g_1) = h_1$ and $a(g_2) = h_2$
since a is a bijection.

$$h_{1}h_{2} = \mathcal{Q}(q_{1})^{*}\mathcal{Q}(q_{2}) = \mathcal{Q}(q_{1}q_{2}) = \mathcal{Q}(q_{2}q_{1}) = = \mathcal{Q}(q_{2})^{*}\mathcal{Q}(q_{1})$$
$$= \mathcal{Q}(q_{2})^{*}\mathcal{Q}(q_{1})$$
$$= h_{2}h_{1}$$

(۲)

$$\chi^{m} = e_{H}$$
. $(O(\chi))^{m} = O(\chi) \cdots O(\chi)$
 $m - times$
 $= O(\chi^{m}) = O(e_{H}) = e_{H}$

(S) left as an exercise.