Reading Questions 8

page 48: Definition 2.39

page 49: Example 2.41

- 1. The order of an element in a group G is the number elements in the group. F
- 2. Let G be a cyclic group such that a is a generator for G. Then the order of G is the order \mathcal{T} of a.
- 3. What is the order of the identity element in a group?

Section 2.3 Cyclic Groups and the Order of an Element (Part 2)

Order of an Element

- **P** 1. Find the order of (123) in S_4 .
- **P 2.** Find the order of $\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ in $GL(2, \mathbb{Z}_2)$.
- **P** 3. Let G be a group such that $a, b \in G$. Prove that $o(aba^{-1}) = o(b)$.
- **P** 4. Let G be a group such that $a, b \in G$. Prove that o(ba) = o(ab).

Recally

Thm:	Let 4 be a group of finite order such that
	at G. Then there exists a smallest positive integer
	k such that $a^{k} = e$ and $ \langle a \rangle = k$.
Def:	K:= order of a
	denoted by O(a) = 1 < a > 1 = K
E <u>x</u> :	The order of 2 in (Z_s, f) is 5.
	<27= 22=0, 2=2, 2=2+2=4, 2=2+2+2=1, 2=3,2=1+2=3

$$2^{5} = 2^{4} \cdot 2 = 3 + 2 = 9 = 0 \frac{3}{1}$$
identity
$$= 2 \quad 0, 2, 3, 3, 3 = 2 = 2 = 7 \quad (2_{3}, 1) \text{ is cyclic}$$
Moreover $0(2) = 5$

$$(37 = \{3=0, 3=3\} = 3+3 = 6=0$$

= $\{0, 33\}$
 (47)
 $(27 = \{0, 2, 4\} = 0(2) = 3$
 $(17 = (57 = 2)$

- Prop: Let G be a group such that $a \in G$. Assume O(a) = mand $a^{K} = e$ where m and K are positive integers. Then m divides K.
- pf: We know m is the smallest positive integer in which $a^{m}=e.(O(a)=m)$. Hence $m \leq K$.

New K=qm+r where rgeZ and O≤r<m by DA.

So
$$a^{k} = a^{m+r} = a^{m} a^{r} = (a^{m})^{2} \cdot a^{r} = (e)^{2} \cdot a^{r} = e \cdot a^{r} = a^{r}$$
.
Since $a^{k} = e$ it follows that $a^{r} = e$. Also $0 \le r \le m$ and
 m is the smallest positive integer in which $a^{m} = e$.

Hence F = 0 = 7 K = qm = 7 m divides K. Thm: Let G be a group such that $a \in G$. Then $O(a) = O(a^{-1})$. pf: with $a^{K} = e^{-p} (a^{-1})^{K} = e^{-(a^{-1})^{K}} = e^{-(a^{-1})^{K}} = (a^{K})^{-1} = (e^{-1})^{K} = e^{-(a^{-1})^{K}} = a^{(K)(-1)} = (a^{K})^{-1} = (e^{-1})^{-1} = e^{-(a^{-1})^{K}} = e^{$

Now $(a^{-1})^{\ell} = e = 7$ $a^{-\ell} = e$ =7 $(a^{\ell})^{-1} = e$ =7 $(a^{\ell})^{-1} = e$ =7 $(a^{\ell})^{-1} \cdot a^{\ell} = e \cdot a^{\ell}$ =7 $e = a^{\ell}$.

Hence $L^{2}O(\alpha) = K = 7$ L = K.

 $... O(a) = O(a^{-1}).$