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1. The order of an element in a group G is the number elements in the group.

2. Let G be a cyclic group such that a is a generator for G. Then the order of G is the order
of a.

3. What is the order of the identity element in a group?

Section 2.3 Cyclic Groups and the Order of an Element

(Part 2)

Order of an Element

P 1. Find the order of (123) in S4.

P 2. Find the order of

[
1 0
1 1

]
in GL(2, Z2).

P 3. Let G be a group such that a, b → G. Prove that o(aba→1) = o(b).

P 4. Let G be a group such that a, b → G. Prove that o(ba) = o(ab).
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