
Reading Questions 7
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page 45: Example 2.28

1. Let a be an element of a group. Then a→2 = a→1a→1.

2. Let a be an element of a group. Then a0 = 1.

3. Let a =

[
1 2
2 2

]
be an element in GL(2, Z3). Compute a2.

Section 2.3 Cyclic Groups and the Order of an Element

(Part 1)

Cyclic Groups

P 1. Let G = (Z5)↑ and a = 2. Compute a3a2.

P 2. Let G = Z5 and a = 2. Compute a3a2.

P 3. Let G be a group such that a → G. Let m → Z and n = 0. Prove aman = am+n.

P 4. Let G be a group such that a → G. Let m,n → Z. Prove that (an)→1 = a→n.

P 5. Show that (Z7)↑ is cyclic by finding a generator for the group.

P 6. Determine if S4 is cyclic.
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Ex 2g t is cyclic and I is a generator

23 i

2 10,1 12 1 it

EO 1 23 417

13 1 1 1 2 1 3 0

Ex Dan where n 4 is not cyclic since

Dan is not abelian
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