Reading Questions 7

page 45: Definition 2.27

page 45: Example 2.28

1. Let *a* be an element of a group. Then
$$a^{-2} = a^{-1}a^{-1}$$
.

- 2. Let a be an element of a group. Then $a^0 = 1$.
- 3. Let $a = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix}$ be an element in GL(2, Z_3). Compute a^2 . $\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$ $\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$

Section 2.3 Cyclic Groups and the Order of an Element (Part 1)

Cyclic Groups

- **P** 1. Let $G = (Z_5)^{\times}$ and a = 2. Compute a^3a^2 .
- **P 2.** Let $G = Z_5$ and a = 2. Compute a^3a^2 .
- **P** 3. Let G be a group such that $a \in G$. Let $m \in \mathbb{Z}$ and n = 0. Prove $a^m a^n = a^{m+n}$.
- **P** 4. Let G be a group such that $a \in G$. Let $m, n \in \mathbb{Z}$. Prove that $(a^n)^{-1} = a^{-n}$.
- **P** 5. Show that $(Z_7)^{\times}$ is cyclic by finding a generator for the group.
- **P 6.** Determine if S_4 is cyclic.

lem: Let G be a group such that as G. Let m, n & Z.

Then (1)
$$a^{m}a^{n} = a^{m+n}$$

(2) $(a^{n})^{-1} = a^{-n}$
(3) $(a^{m})^{n} = a^{mn}$

Pf: (1) proof by cases.

$$(m, n, 70)$$
 $a^{m}a^{n} = a \cdots a \cdot a \cdots a$
 $m - times$ $n - times$
 $m + n - times$
 $= a^{m+n}$

$$(m_{1}n \times 0) \qquad a^{m}a^{n} = a^{-1 \cdot |m|} a^{-1 \cdot |n|}$$

$$= \underbrace{a^{1} \cdots a^{-1}}_{|m| - times} \underbrace{a^{-1} \cdots a^{-1}}_{|n| - times}$$

$$= (a^{-1})^{|m| + |n|} \quad (by = 3)$$

$$= a^{-(m) - |n|}$$

$$= a^{m + n}$$

$$(mco, n7o) a^{m}a^{n} = a^{-1 \cdot lm}a^{n}$$
Assume

$$[m|7n = a^{-1} \cdot \dots a^{-1} a \dots a$$

$$[m|-times n-times$$

$$= a^{-1} \cdot \dots a^{-1} e \dots e$$

$$[m1-n] n-times$$

$$= (a^{-1})^{[m1-n]} = a^{-lm1+n}$$

$$= a^{m+n}$$

(N=0) Try

Thm: Let
$$(G_1, \cdot)$$
 be a group such that $a \in G_1$.
Let $H = \{a^K : K \in \mathbb{Z}\} = \{2, \dots, \tilde{a}^2, a^1, a^0, a^1, a^2, \dots\}$.
Then (H, \cdot) is an abelian group.

$$\frac{pf:}{(closure)}$$
 Let $a \in bin$ $and k, l \in \mathbb{Z}$.
($closure$) Then $a^{k}a^{l} = a^{k+l} \in k+l \in \mathbb{Z}$
 $\in H$.

(identity)
$$\underline{a^{K} \cdot a^{0}} = a^{K+0} = \underline{a^{K}} = a^{0+K} = \underline{a^{0-K}}$$

 $a^{0} - identity$

Def: Let
$$(u, \cdot)$$
 be a group such that a ele and
 $G = \{a^{K} : K \in \mathbb{Z}\}$.
Then G is cyclic (cyclic group) and a is a
generator of G_{1} . Also $G = \{a\}$.

$$E_{\underline{x}}: (Z_{3}, +) \text{ is cyclic and l is a generator,}
Z_{3} = \langle 1 \rangle.
Z_{3} = \{1^{\circ}, 1^{\circ}, 1^{\circ}, 1^{\circ}\} = \{2^{\circ}, 1, 1+1\} = [2^{\circ}, 1, 2^{\circ}] = \langle 1 \rangle.$$

$$= \{2^{\circ}, 1, 2^{\circ}\} = \langle 1 \rangle.$$

$$= \{2^{\circ}, 1, 2^{\circ}\} = \langle 1 \rangle.$$

 $E_{\underline{x}}$: $D_{\underline{a}n}$ where n > 4 is not cyclic since $D_{\underline{a}n}$ is not abelian,

Thm: Let 4 be a group of Sinite order such that
a
$$\epsilon$$
 by . Then there exists a smallest positive
integer k such that $a^{k} = \epsilon$ and $|\langle a \rangle | = k$.

$$\mu^{(k+1)} = a^{k}a^{k}$$
$$= e^{k}a = q$$