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page 43: Definition 2.23

page 43: Theorem 2.24 and its proof

1. If a and b are elements of a semigroup and ab = e where e is the identity element of the
semigroup then a is a left inverse of b.

2. All semigroups are groups.

3. Do you have any concerns about the proof? Is the proof complete?

Section 2.2 Cancellation Properties (Part 1)

Properties of a Group

Definition

F a set S, a map b : S → S ↑ S is called a binary operation on S.

Definition

Assume that ↓ is an associative binary operation on a set G. Then (G, ↓) is called a
semigroup. In this case, we say G is a semigroup.

Theorem

Let G be an non-empty semigroup. Assume that G has a left identity and that every
element of G has a left inverse. That is, there exists an element e ↔ G such that, for every
a ↔ G, ea = a, and, for every a ↔ G, there exists an element, denoted by a→1, such that
a→1a = e. Then G is a group.

P 1. Let G be a group such that a, b, c ↔ G. Prove if ba = ca then b = c.

P 2. Prove: Let G be a group. For all a, b ↔ G, (ab)→1 = b→1a→1.

More Properties of a Group

P 3. Show that ((Z4)↑, ·) is not a group.

P 4. Prove: The group G is abelian if and only if (ab)→1 = a→1b→1 for all a, b ↔ G.
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