Reading Questions 6

page 43: Definition 2.23

page 43: Theorem 2.24 and its proof

- 1. If a and b are elements of a semigroup and ab = e where e is the identity element of the semigroup then a is a left inverse of b.
- 2. All semigroups are groups.
- 3. Do you have any concerns about the proof? Is the proof complete?

Section 2.2 Cancellation Properties (Part 1)

Properties of a Group

F a set S, a map $b: S \times S \to S$ is called a binary operation on S.

Definition

Definition

a binary operation on S.
$$\begin{cases} monday \\ reading \end{cases}$$

Assume that \circ is an associative binary operation on a set G. Then (G, \circ) is called a semigroup. In this case, we say G is a semigroup.

Theorem

Let G be an non-empty semigroup. Assume that G has a left identity and that every element of G has a left inverse. That is, there exists an element $e \in G$ such that, for every $a \in G$, ea = a, and, for every $a \in G$, there exists an element, denoted by a^{-1} , such that $a^{-1}a = e$. Then G is a group.

P 1. Let G be a group such that $a, b, c \in G$. Prove if ba = ca then b = c.

P 2. Prove: Let G be a group. For all $a, b \in G$, $(ab)^{-1} = b^{-1}a^{-1}$.

P 4. Prove: The group G is abelian if and only if $(ab)^{-1} = a^{-1}b^{-1}$ for all $a, b \in G$.

$$(Z_{a}, \cdot)$$
 is not a group. 0123
b = aba' 00000
b = aba' 0123
b a' = a' b' t 20202
b' a' b = a' = 7 a' b = ba' 30321

wed reading

Theorem

Let G be an non-empty semigroup. Assume that G has a left identity and that every element of G has a left inverse. That is, there exists an element $e \in G$ such that, for every $a \in G$, ea = a, and, for every $a \in G$, there exists an element, denoted by a^{-1} , such that $a^{-1}a = e$. Then G is a group.

with
$$3 \times 64$$
 st. $a \times 2 \times a = a$ $\forall a \in 4$
(identify) Consider e. We know
 $\forall a \in 6$ e $a = a$. Suppose $a = b$.
Then $a^{'}a = a^{'}b$
 $=7$ $e = a^{-1}b$ and $a^{'}a = a^{-1}b$
 $c := 1 \times 1 \text{ inverse}$
 $=7$ $c = a^{-1}b$ and $a^{-1}a = a^{-1}b$
 $c := 1 \times 1 \text{ inverse}$
 $=7$ $c = a^{-1}b$ and $a^{-1}a = a^{-1}b$
 $(1eft \text{ inverse})$
 $=7$ $e^{a = e^{b}}$
 $=7$ $e^{a = e^{b}}$
 $=7$ $e^{a = e^{b}}$

$$=7$$
 $ae=a$.

(inverse) Suppose
$$ab=e$$
. Then $a^{-1}ab=a^{-1}e$
= a^{-1} ,
Hence $eb=a^{-1}=7$ $b=a^{-1}$. =7 $aa^{-1}=a^{-1}a=e$

Let is be a group such that
$$a, b, c \in G$$
.
Then $ab = ac = 7$ $b = c$ and $ba = ca = 7$ $b = c$.

$$\frac{pf:}{p} = ab = ac. \quad \text{Then} \quad a^{-1}ab = a^{-1}ac$$

$$=7 \quad (a^{-1}a)b = (a^{-1}a)c \quad (assoc.)$$

$$=7 \quad eb = ec \quad (inverse)$$

$$=7 \quad b = c \quad (id)$$

len: let la be a group.

Hence
$$e = x$$
.

(pf) § ab = ba = e. Then $a^{-i}ab = a^{-i}e$ =7 $eb = a^{-i}e$ =7 $b = a^{-i}$.

(3) the inverse of
$$a^{-1}$$
 is a $\forall a \in G$.
 $(a^{-1})^{-1} = ?$

a' = a a a - a - a - e by def of a - l