Reading Questions 6

page 43: Definition 2.23

page 43: Theorem 2.24 and its proof

1. If @ and b are elements of a semigroup and ab = e where e is the identity element of the
semigroup then a is a left inverse of b.

2. All semigroups are groups.

3. Do you have any concerns about the proof? Is the proof complete?

Section 2.2 Cancellation Properties (Part 1)

Properties of a Group
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Faset S;amapb:S xS — S is called a binary operation on S.
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Assume that o is an associative binary operation on a set G. Then (G,o) is called a
semigroup. In this case, we say G is a semigroup. wed
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Theorem

Let G be an non-empty semigroup. Assume that G has a left identity and that every
element of G has a left inverse. That is, there exists an element e € G such that, for every
a € G, ea = a, and, for every a € G, there exists an element, denoted by a~!, such that

a"'a =e. Then G is a group.

P 1. Let G be a group such that a,b,c € G. Prove if ba = ca then b = c. "
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P 2. Prove: Let G be a group. For all a,b € G, (ab)™! =b"1a" 1. Pl
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P 3. Show that ((Z4)*,-) is aet-a group. 3 [ 3 } . b
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P 4. Prove: The group G is abelian if and only if (ab)~! = a~'b~" for all a,b € G.
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Let G be an non-empty semigroup. Assume that G has a left identity and that every
element of G has a left inverse. That is, there exists an element e € GG such that, for every
a € G, ea = a, and, for every a € G, there exists an element, denoted by a~!, such that
a~'a =e. Then G is a group.
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