Reading Questions 1

page 4: the entire page

page 5: the entire page

- 1. The symmetries of a square are squares. \mathbf{F}
- 2. Combining two symmetries of a square produces another symmetry.
- 3. How many rotation symmetries are on the square?

Ro, Rao, R, 80, R270

י 23

T

Section 1.1 Symmetries of a Square (Part 1)

The table of D₈

P 1. Compute $R_{90}DVVHR_{180}$.

P 2. Compute the second row of the table for D_8 . That is, compute $R_{180}X$ for all X in $\{R_0, R_{90}, R_{180}, R_{270}, H, V, D, D'\}$.

P 3. Find 2 elements x, y in D_8 such that $x \neq y$ and $xy \neq yx$.

P 4. Find 2 elements x, y in D_8 such that x = y and xy = yx.

R_{qb} R_{۱۶۵} Alternative Notation

Definition: alternative definition of D_8

$$\mathbf{D}_8 = \langle a, b \mid a^4 = b^2 = e, ba = a^3 b \rangle$$

P 5. Use the alternative definition of D_8 to compute $\underline{B_{90}DVVHR_{180}}$. Write your final answer in terms of an element of D_8 .

Rao DVVH Rao

4

Ex:, The set of integers along with "+" form a group.

$$x = 7$$

 $x = 7$
 $x = 7$
 $x = 100$
 $x = 3$
 $x = 4$
 $x = 7$
 $x = 3$
 $x = 4$
 $x = 7$
 $x = 3$
 $x = 4$
 $x = 7$
 $x = 3$
 $x = 4$

$$\begin{cases} add \quad 3 \quad to \quad 0 \quad := 3 \\ add \quad 4 \quad to \quad 3 \quad := 7 \\ this \quad is \quad composition \quad of \\ the \quad transformations \\ \xi \xi \dots, -1, 0, 1, 2, \dots \quad \zeta, + \zeta \quad is \quad a \quad group \end{cases}$$

$$E_{X} : Commpute V R_{qo} R_{qo} H H D. Note:$$

$$H H = VV = DD = D'D' = R_{a}$$
Hence
$$V R_{qo} R_{qo} H H D = V R_{qo} R_{qo} D \qquad R_{qo} R_{qo} = R_{igo}$$

= V R₁₈₀ D

Def: Dan = symmetries of a regular n-gon.

Notation:
Lonsider
$$D_8$$
. Let $e = R_0$, $a = R_{q0}$ and
 $b = H$.

Next time we will see that

$$D_{8} = \begin{cases} R_{180} & R_{180} & R_{370} & H & V & V & V \\ S_{1} & J & J & J & J & J \\ Z_{2} & R_{3} & R_{3}^{2} & R_{3}^{3} & S_{3} & R_{3}^{2} & S_{3}^{2} & S_{3$$

$$R_{y_0} D = \alpha$$

$$R_{q_0} R_{q_0} = R_{q_0} R_{q_0} = R_{q_0} = \alpha \alpha = \alpha^2$$

$$R_{q_0} R_{q_0} = R_{q_0} D = \alpha \alpha^3 b$$

$$R_{q_0} D = \alpha^3 a^3 b$$