Reading Questions 19

Example 7.3.2

- 1. The distinct nonzero vectors \vec{v}_2 and \vec{v}_2 both can be eigenvectors of the eigenvalues λ .
- 2. If λ is an eigenvalue of A then ker $A \lambda I$ can be used to find an eigenvector of A.
- 3. What is the eigenspace of matrix?

Section 7.3 Finding the eigenvectors of a matrix (Part 1)

Eigenspaces

P 1. Find the eigenvectors for the matrix $A = \begin{bmatrix} -3 & 0 & 4 \\ 0 & -1 & 0 \\ -2 & 7 & 3 \end{bmatrix}$.

P 2. For each eigenvalue λ of a find the algebraic and geometric multiplicity of λ .

P 3. Are the matrices
$$A = \begin{bmatrix} -3 & 0 & 4 \\ 0 & -1 & 0 \\ -2 & 7 & 3 \end{bmatrix}$$
 and $B = \begin{bmatrix} 3 & 0 & 0 \\ 2 & 1 & 0 \\ 2 & 7 & 3 \end{bmatrix}$ similar?

P 4. Is the matrix B diagonalizable?

P 5. Suppose the matrices C and D are similar.

1. Show that the matrices $C - \lambda I$ and $D - \lambda I$ are similar.

2. What can you conclude about the kernels of the matrices C and D?

3. Show that the geometric multiplicity of C and D are the same.