Reading Questions 17

- 1. If A and B are similar then the matrix A is diagonalizable.
- 2. All diagonal matrices are diagonalizable.
- 3. If $\{\vec{v}_2, \ldots, \vec{v}_n\}$ is an eigenbasis for the matrix A then the matrix $[\vec{v}_1 \cdots \vec{v}_n]$ is invertible.
- 4. If $S^{-1}AS = B$ for some invertible S and diagonal B what can you say about the columns of S?

Section 7.1 Diagonalization (Part 1)

Eigenvalues and Eigenvectors

P 1. Write down what it means for the vector \vec{v} to be an eigenvector of the matrix A.

P 2. If the vector \vec{v} is an eigenvector for the matrix A is \vec{v} an eigenvector for the matrix kA for some nonzero constant k? Explain your answer.

P 3. Does there exist an invertible matrix S and a diagonal matrix B such that AS = SB where A is the linear transformation which rotates a vector 180° in \mathbb{R}^2 ? Explain your answer.

P 4. If
$$\begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix}$$
 is an eigenvector of the matrix $\begin{bmatrix} 4 & 1 & 1 \\ -5 & 0 & -3 \\ -1 & -1 & 2 \end{bmatrix}$ what is its eigenvalue?

P 5. Let \vec{v} be an eigenvector for A. Is \vec{v} an eigenvector for A^3 ? If so what are the eigenvalues?

P 6. Let \vec{v} be an eigenvector for A. Is \vec{v} an eigenvector for $A + \sigma I$? If so what are the eigenvalues?