Reading Questions 14

page 463: definition a.9

- 1. The cross product $\vec{v} \times \vec{w}$ is a unit vector.
- 2. If \vec{u} is orthogonal to \vec{v} and \vec{w} then $\vec{u} = \vec{v} \times \vec{w}$.
- 3. Give a vector in \mathbb{R}^4 which is orthogonal to both \vec{e}_1 and \vec{e}_2 .

Section 6.1 Introduction to determinants (Part 1)

Cross Product

P 1. Write down the formula for the determinant of a 3×3 matrix.

P 2. If the 3×3 matrix A is not invertible then the determinant of A is _____.

- **P** 3. If the 3×3 matrix A is not invertible then the dimension of the image of A is _____.
- **P** 4. Compute the determinant for the follow matrices.

$$A = \begin{bmatrix} 0 & 1 & 1 \\ 3 & 2 & 1 \\ 1 & 0 & 1 \end{bmatrix} \quad B = \begin{bmatrix} 3 & 2 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} \quad C = \begin{bmatrix} 0 & 2 & 2 \\ 3 & 2 & 1 \\ 1 & 0 & 1 \end{bmatrix} \quad D = \begin{bmatrix} 0 & 1 & 1 \\ 3 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$

P 5. Compare det(A), det(B), det(C) and det(D).