Reading Questions 12

page 150: example 2

- 1. The vectors $\begin{bmatrix} 4 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} -1 \\ 3 \end{bmatrix}$ form a basis for \mathbb{R}^2 .
- 2. If the columns of A form a basis \mathfrak{B} then $[\vec{b}]_{\mathfrak{B}}$ is the solution to $A\vec{x} = \vec{b}$.
- 3. What is the vector $[\vec{x}]_{\mathfrak{B}}$ called?

Section 3.4 Coordinates (Part 1)

The coordinate vector

- **P 1.** Write down a way to find the \mathfrak{B} -coordinates to a vector \vec{x} .
- **P 2.** Find $[\vec{x}]_{\mathfrak{B}}$ where $\mathfrak{B} = \{\begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} 5\\6 \end{bmatrix}\}$ and $\vec{x} = \begin{bmatrix} -4\\4 \end{bmatrix}$.
- **P** 3. Find $[\vec{x}]_{\mathfrak{B}}$ given that $[\vec{v}]_{\mathfrak{B}} = \begin{bmatrix} 4 \\ 12 \end{bmatrix}$ and $2\vec{v} = \vec{x}$.
- **P 4.** Find the \mathfrak{B} -matrix for the linear transformation $T(\vec{x}) = A\vec{x}$, where

$$A = \begin{bmatrix} 0 & 1 \\ 2 & 3 \end{bmatrix}$$

and
$$\mathfrak{B} = \{ \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \}.$$