Reading Questions 11

page 136: example 1

- 1. If $\vec{v}, \vec{w} \in \mathbb{R}^n$ and the first entry of \vec{v} is nonzero and the first entry of \vec{w} is zero then \vec{v} and \vec{w} are linearly independent.
- 2. If $\operatorname{span}(\vec{v}_2, \vec{v}_2, \vec{v}_3) = \ker(A)$ then $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ is a basis for $\ker(A)$.
- 3. If span $(\vec{v}_2, \vec{v}_2) = \ker(A)$ and \vec{v}_1 and \vec{v}_2 are linearly independent then the dimension of $\ker(A)$ is 2.
- 4. Suppose span $\begin{pmatrix} 2\\0 \end{pmatrix}$, $\begin{bmatrix} 0\\1 \end{bmatrix}$, $\begin{bmatrix} 1\\1 \end{bmatrix}$) = V. What is the dimension of V?

Section 3.3 The Dimension of a Subspaces in \mathbb{R}^n (Part 1)

Dimension

P 1. Let
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 3 & 6 \end{bmatrix}$$
.

- 1. Find a basis for the kernel.
- 2. Find a basis for the image.
- 3. Determine the dimensions for each of the previously found subspaces.
- 4. Use the dimension of the image of A to determine the number of free variables for the system $A\vec{x} = \vec{0}$.
- 5. Use the dimension of the kernel of A to determine the rank of A.
- **P** 2. For which values of the constant k do the following vectors form a basis for \mathbb{R}^3 ?

$$\begin{bmatrix} 2\\2\\2 \end{bmatrix}, \begin{bmatrix} 1\\k\\k^2 \end{bmatrix}, \begin{bmatrix} 1\\-1\\2 \end{bmatrix}$$

- **P** 3. Consider the plane $2x_1 + 3x_2 + x_3 = 0$ which is a subspace of \mathbb{R}^3 .
 - 1. Find a matrix whose kernel is the same as the plane.
 - 2. Find a basis for the plane.
 - 3. Find the dimension of the plane.