Reading Questions 9

page 117: example 11

- 1. If T is a linear transformation from \mathbb{R}^n to \mathbb{R}^m then the kernel of T is the set of vectors in \mathbb{R}^n which get mapped to the zero vector in \mathbb{R}^m .
- 2. The kernel of a linear transformation can be found by solving the linear system $A\vec{x} = \vec{1}$.
- 3. What is the kernel of I_3 ?

Section 3.1 The image and kernel of a linear transformation (Part 1)

The Image

P 1. Fill in the blank.

- 1. The ______ of a function $f: X \to Y$ is the set of values the function takes in its target space.
- 2. If $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_m$ are in \mathbb{R}^n . Then the set

$$\{c_1\vec{v}_1 + c_2\vec{v}_2 + \dots + c_m\vec{v}_m : c_1, \dots, c_m \in \mathbb{R}\}$$

is called _____

P 2. Write the image of the linear transformation $\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$.

The Kernel

P 3. Find the vectors that span the image of $\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \end{bmatrix}$.

 ${\bf P}$ 4. Write down the definition of the kernel of a linear transformation.

P 5. Find a linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$ whose image is the line spanned by the vector $\begin{bmatrix} -1\\1\\2 \end{bmatrix}$.

P 6. Find the vectors that span the kernel of $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$.

P 7. Assume A is a $n \times m$ matrix. If rank(A) = m what is the kernel of A?

P 8. Find a linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$ whose kernel is the line spanned by the vector $\begin{bmatrix} -1 \\ 1 \\ 2 \end{bmatrix}$.