Reading Questions 6

page 79: theorem 2.3.4

page 79: example 1

- 1. If A is an $n \times p$ matrix and B is an $p \times m$ matrix then BA is an $p \times p$ matrix.
- 2. The *i*th entry of BA is a dot product.
- 3. Compute $\begin{bmatrix} 2 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}$. You may write your matrix using the notation

 $\begin{bmatrix} 1 & 3 \end{bmatrix} \\ \begin{bmatrix} 2 & 4 \end{bmatrix}$

to represent the matrix $\begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$.

Section 2.3 Matrix Product (Part 1)

Multiplying Matrices

- **P 1.** Let A and B be the $n \times m$ and $m \times p$ matrices respectively. What is the size of AB?
- **P 2.** Compute $\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 1 & 2 \end{bmatrix}$ and $\begin{bmatrix} 1 & 3 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$. In general, does AB = BA?
- ${\bf P}$ 3. Let the matrix representation of the linear transformations T and S be

1	2	3		[1	2	3	1]
2	2	2	and	2	2	2	1
3	2	1		3	2	1	1

respectively. Find the matrix representation of $T \circ S$.

Multiplying Matrices

- **P** 4. Compute the following product of matrices $\begin{bmatrix} 1 & 3 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 1 & 2 \end{bmatrix}$.
- **P** 5. Find a 3×3 matrix A which is not I_3 or $-I_3$ such that $AA = I_3$.
- **P 6.** Suppose $T(\vec{x})$ rotates \vec{x} counterclockwise by θ , and $S(\vec{x})$ rotates \vec{x} counterclockwise by $-\theta$.
 - 1. Find the matrix A of T and the matrix B of S.
 - 2. Compute AB.
 - 3. Interpret $(T \circ S)(\vec{x})$ geometrically.
- **P** 7. Let A, B, and C be $n \times n$ matrices. Show that A(B+C) = AB + AC.
- **P 8.** Find a 2×2 matrix A such that $A^2 \neq I$ and $A^4 = I$.

P 9. Let *P* be the matrix projection onto
$$\vec{u} = \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$$
. Is there a matrix *Q* such that $QP = I$?