Reading Questions 5

page 61-62 Orthogonal Projections

- 1. The orthogonal projection of a vector onto a line L is a vector that is parallel to L.
- 2. The transformation $\operatorname{proj}_{L}(\vec{x})$ is the orthogonal projection of the vector \vec{x} onto the line L.
- 3. Suppose the vector \vec{u} is a unit vector. What is the value of $||\vec{u}||^3$?

Section 2.2 Linear Transformations in Geometry (Part 1)

Scalings and Orthogonal Projections

P 1. Find the matrix corresponding to the transformation $T(\vec{x}) = 2023\vec{x}$. How does this transformation transform the vector \vec{x} ?

P 2. Write down the formula and matrix for the orthogonal projection of \vec{x} passing through the line (0,0) and (u_1, u_2) where $u_1^2 + u_2^2 = 1$.

P 3. Let *L* be the line in \mathbb{R}^2 that consists of all scalar multiples of the vector $\begin{bmatrix} 2\\1 \end{bmatrix}$. Find the orthogonal projection of the vector $\begin{bmatrix} 1\\1 \end{bmatrix}$ onto *L*.

Reflections and Rotations

P 4. Write down the matrix for the reflection transformation that reflects vectors over the line L containing the unit vector $\begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$.

P 5. Find the matrix for the linear transformation that reflects vectors in \mathbb{R}^2 over the line y = -2x.

P 6. Find the matrix for the linear transformation that rotates vectors in \mathbb{R}^2 by 60°.