$\mathcal{R}: 7.1.7$ Reading Questions 17

- 1. If A and B are similar then the matrix A is diagonalizable. \checkmark
- 2. All diagonal matrices are diagonalizable. \neg
- 3. If $\{\vec{v_1}, \ldots, \vec{v_n}\}$ is an eigenbasis for the matrix A then the matrix $[\vec{v_1} \cdots \vec{v_n}]$ is invertible. Υ
- 4. If $S^{-1}AS = B$ for some invertible S and diagonal B what can you say about the columns of S?

Section 7.1 Diagonalization (Part 1)

Eigenvalues and Eigenvectors

P 1. Write down what it means for the vector \vec{v} to be an eigenvector of the matrix A.

P 2. If the vector \vec{v} is an eigenvector for the matrix A is \vec{v} an eigenvector for the matrix kA for some nonzero constant k? Explain your answer.

P 3. Does there exist an invertible matrix S and a diagonal matrix B such that AS = SB where A is the linear transformation which rotates a vector 180° in \mathbb{R}^2 ? Explain your answer.

P 4. If
$$\begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix}$$
 is an eigenvector of the matrix $\begin{bmatrix} 4 & 1 & 1 \\ -5 & 0 & -3 \\ -1 & -1 & 2 \end{bmatrix}$ what is its eigenvalue?

P 5. Let \vec{v} be an eigenvector for A. Is \vec{v} an eigenvector for A^3 ? If so what are the eigenvalues?

P 6. Let \vec{v} be an eigenvector for A. Is \vec{v} an eigenvector for $A + \sigma I$? If so what are the eigenvalues?

$$\begin{array}{cccc} \begin{array}{cccc} \mathcal{R}ecall: & \text{Let} & A & be & nxn & and & \mathcal{B}=\underbrace{2} & v_1^2, \ldots, v_n^2 & \underbrace{3} & and \\ \mathcal{B} & be & \text{the } & \mathcal{B}-matrix & . & \text{Then } & AS=SB & \text{where} \\ & & & \\ S &= \begin{bmatrix} v_1^2 & v_2^2 & \cdots & v_n^2 \\ 1 & 1 & \cdots & 1 \end{bmatrix} \\ \end{array}$$

$$\begin{array}{ccccc} \begin{array}{c} \mathcal{E}x: & & & \\ \mathcal{F}ind & A^5 \\ A=\begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} & & \\ \begin{array}{c} \text{find } & A^5 \\ \text{det } A \end{array}$$

0

a basis for ker A

$$\begin{cases} (-1)^{5} & 6 & 0 & 0 \\ 0 & 0^{5} & 0 & 0 \\ 0 & 0 & 1^{5} & 0 \\ 0 & 0 & 0^{2^{5}} \end{bmatrix}$$
 rank $A = 3 = 4 - dim(her A)$

$$det A = 0 = (-1)(0)(1)(2)$$

$$det A = 0 = (-1)(0)(1)(2)$$

$$Her A = span(\left[\begin{smallmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}\right]$$

$$Her A = span(\left[\begin{smallmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}\right]$$

$$A = \frac{7}{x} = \frac{7}{x} = \begin{bmatrix} 0 \\ x_{2} \\ 0 \\ 0 \\ 0 \end{bmatrix} = x_{2} \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

$$Def:$$
 A matrix A is diagonalizable if there exists an invertible S such that $s^A S = B$ is diagonal.

$$T(\overline{e_1}) = \overline{e_1}$$

$$T(\overline{e_2}) = -\overline{e_2}$$

$$T(\overline{e_2}) = -\overline{e_2}$$

$$T = \{\overline{e_1}, \overline{e_2}\}$$

$$S = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$F = \begin{bmatrix} T(\overline{e_1}) \\ 1 & p \end{bmatrix}$$

$$T(\overline{e_2}) = T(\overline{e_2})$$

$$F = \begin{bmatrix} T(\overline{e_1}) \\ 1 & p \end{bmatrix}$$

$$T(\overline{e_2}) = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$T(\overline{e_1}) = T(\overline{e_2})$$

$$T(\overline{e_2}) = T(\overline{e_2})$$

 $Def: A^{n \times n} \neq eigenvector of A$ $Def: A \overrightarrow{v} = \lambda \overrightarrow{v} \qquad \overrightarrow{v}^{7} \neq 0$ $Prigenvalue of A corresponding for \overrightarrow{v}$ $if \qquad \overrightarrow{v}_{1}, \dots, \overrightarrow{v}_{n} \qquad a \text{ basis for } \mathbb{R}^{n}$ $if \qquad \overrightarrow{v}_{1}, \dots, \overrightarrow{v}_{n} \qquad are \quad eigenvectors \quad of A \text{ and linear ind},$ $then \qquad \underbrace{z \, \overrightarrow{v}_{1}, \dots, \overrightarrow{v}_{n} \quad J \text{ is an } cigenbasis}.$

Thm: If
$$\vec{v}$$
 is an eigenvetor of A then \vec{v} is
an eigenvector for A^2 .

Thm: The matrix Ann is diagonalizable if and only if there exists an eigenbasis for A.

$$A = S = S D$$

$$A \begin{bmatrix} \frac{1}{\sqrt{1}} & \frac{1}{\sqrt{2}} & \cdots & \frac{1}{\sqrt{n}} \\ \frac{1}{\sqrt{1}} & \frac{1}{\sqrt{2}} & \cdots & \frac{1}{\sqrt{n}} \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{1}} & \frac{1}{\sqrt{1}} & \frac{1}{\sqrt{1}} \\ \frac{1}{\sqrt{1}} & \frac{1}{\sqrt{2}} & \cdots & \frac{1}{\sqrt{n}} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{\sqrt{1}} & \frac{1}{\sqrt{1}} & \frac{1}{\sqrt{2}} & \cdots & \frac{1}{\sqrt{n}} \\ \frac{1}{\sqrt{1}} & \frac{1}{\sqrt{1}} & \frac{1}{\sqrt{1}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{1}} & \frac{1}{\sqrt{1}} \\ \frac{1}{\sqrt{1}} & \frac{1}{\sqrt{1}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{1}} & \frac{1}{\sqrt{1}} \\ \frac{1}{\sqrt{1}} & \frac{1}{\sqrt{1}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{1}} & \frac{1}{\sqrt{1}} \\ \frac{1}{\sqrt{1}} & \frac{1}{\sqrt{1}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{1}} & \frac{1}{\sqrt{1}} \\ \frac{1}{\sqrt{1}} & \frac{1}{\sqrt{1}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{1}} & \frac{1}{\sqrt{1}} \\ \frac{1}{\sqrt{1}} & \frac{1}{\sqrt{1}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{1}} & \frac{1}{\sqrt{1}} \\ \frac{1}{\sqrt{1}} & \frac{1}{\sqrt{1}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{1}} & \frac{1}{\sqrt{1}} \\ \frac{1}{\sqrt{1}} & \frac{1}{\sqrt{1}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{1}} & \frac{1}{\sqrt{1}} \\ \frac{1}{\sqrt{1}} & \frac{1}{\sqrt{1}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{1}} & \frac{1}{\sqrt{1}} \\ \frac{1}{\sqrt{1}} & \frac{1}{\sqrt{1}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{1}} & \frac{1}{\sqrt{1}} \\ \frac{1}{\sqrt{1}} & \frac{1}{\sqrt{1}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{1}} & \frac{1}{\sqrt{1}} \\ \frac{1}{\sqrt{1}} & \frac{1}{\sqrt{1}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{1}} & \frac{1}{\sqrt{1}} \\ \frac{1}{\sqrt{1}} & \frac{1}{\sqrt{1}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{1}} & \frac{1}{\sqrt{1}} \\ \frac{1}{\sqrt{1}} & \frac{1}{\sqrt{1}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{1}} & \frac{1}{\sqrt{1}} \\ \frac{1}{\sqrt{1}} & \frac{1}{\sqrt{1}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{1}} & \frac{1}{\sqrt{1}} \\ \frac{1}{\sqrt{1}} & \frac{1}{\sqrt{1}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{1}} & \frac{1}{\sqrt{1}} \\ \frac{1}{\sqrt{1}} & \frac{1}{\sqrt{1}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{1}} & \frac{1}{\sqrt{1}} \\ \frac{1}{\sqrt{1}} & \frac{1}{\sqrt{1}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{1}} & \frac{1}{\sqrt{1}} \\ \frac{1}{\sqrt{1}} & \frac{1}{\sqrt{1}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{1}} & \frac{1}{\sqrt{1}} \\ \frac{1}{\sqrt{1}} & \frac{1}{\sqrt{1}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{1}} & \frac{1}{\sqrt{1}} \\ \frac{1}{\sqrt{1}} & \frac{1}{\sqrt{1}} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{1}} & \frac{1}{\sqrt{1}} \\ \frac{1}{\sqrt{1}} & \frac{1}{\sqrt{1}} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{1}} & \frac{1}{\sqrt{1}} \\ \frac{1}{\sqrt{1}} & \frac{1}{\sqrt{1}} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{1}} & \frac{1}{\sqrt{1}} \\ \frac{1}{\sqrt{1}} & \frac{1}{\sqrt{1}} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{1}} & \frac{1}{\sqrt{1}} \\ \frac{1}{\sqrt{1}} & \frac{1}{\sqrt{1}} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{1}} & \frac{1}{\sqrt{1}} \\ \frac{1}{\sqrt{1}} & \frac{1}{\sqrt{1}} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{1}} & \frac{1}{\sqrt{1}} \\ \frac{1}{\sqrt{1}} & \frac{1}{\sqrt{1}} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{1}} & \frac{1}{\sqrt{1}} \\ \frac{1}{\sqrt{1}} & \frac{1}{\sqrt{1}} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{1}} & \frac{1}{\sqrt{1}} \\ \frac{1}{\sqrt{1}} & \frac{1}{\sqrt{1}} \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{1}} & \frac{1}{\sqrt{1}} \\ \frac{1}{\sqrt{1}} & \frac{1}{\sqrt{1}} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{1}} & \frac{1}{\sqrt{1}} \\ \frac{1}{\sqrt{1}} & \frac{1}{\sqrt{1}} \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{1}} & \frac{1}{\sqrt{1}} \\ \frac{1}{\sqrt{1}} & \frac{1}{\sqrt{1}} \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{1}} & \frac{1}{\sqrt{1}} \\ \frac{1}{$$

 $\underline{E_{\mathbf{x}'}}$ Let $T(\overline{\mathbf{x}'}) = A\overline{\mathbf{x}'} = \begin{bmatrix} 0 & -i \\ 1 & 0 \end{bmatrix} \overline{\mathbf{x}'}$. A is a rotation 90°. Find all eigenvalues and eigenvectors of A.

 $T(\vec{v}) \neq \lambda \vec{v}$ for any \vec{v} . This means the eigenvectors and eigenvalues are not real.