Reading Questions 13

page 156: example 7

1. The matrix $\begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}$ is similar to the matrix $\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$. S is not invertible, F 2. If $\begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$ is similar $\begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}$ then $\begin{bmatrix} 4 & 0 \\ 0 & 1 \end{bmatrix}$ is similar to $\begin{bmatrix} 4 & 2 \\ 0 & 1 \end{bmatrix}$. 3. Suppose $A = SBS^{-1}$ where $A = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$. What is B? Section 3.4 Coordinates (Part 2) A = B = 7 S''

The coordinate vector

P 1. Write down what it means for two matrices to be similar.

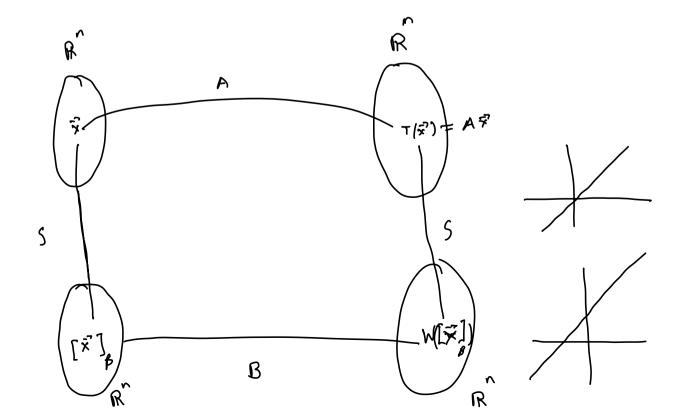
P 2. If A is similar to the identity matrix what can you say about A?

P 3. Let

$$A = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix}.$$

Find an invertible matrix S such that AS = SB.

P 4. Suppose
$$\begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix} = S \begin{bmatrix} 5 & 0 \\ 0 & -1 \end{bmatrix} S^{-1}$$
. Find a matrix *C* which is similar to $\begin{bmatrix} 9 & 8 \\ 16 & 17 \end{bmatrix}$.



Thm: Let
$$T: \mathbb{R}^n \to \mathbb{R}^n$$
 be a LT such that $T[\overline{x}^n] = A\overline{x}^n$.
Let B be a $\overline{\beta}$ -matrix of T . Then
 $AS = SB$ where $S = \begin{bmatrix} \frac{1}{2} & \cdots & \frac{1}{2} \\ 1 & \cdots & 1 \end{bmatrix}$
 $\overline{\beta} = \{ \overline{x}^n, \dots, \overline{x}^n \}$. In this case we say A is
similar to B .
Ex: Are the matrices $A = \begin{bmatrix} 1 & 2 \\ A & 5 \end{bmatrix}$ and $B = \begin{bmatrix} 5 & 0 \\ 0 & -1 \end{bmatrix}$
similar $\frac{7}{2}$
 A S S B
 A B B B

$$s = \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix}$$
 ad- $bc \neq 0 = 7 s' exists!$

Let t be a positive integer. Since A is similar to B there exists an invertible S such that AS=SB. Hence

$$A \underset{r_{I}}{SS}^{-1} = SBS^{-1}$$

$$A = SBS^{-1}$$

$$A^{t} = (SBS^{-1})^{t} = SBS^{-1} SBS^{-1} \cdots SBS^{-1}$$

$$+ times$$

$$= SB\cdot B \cdots Bs^{-1}$$

$$+ - times$$

$$= SB^{t}s^{-1}$$

$$= SB^{t}s^{-1}$$