Reading Questions 11

page 136: example 1

- 1. If $\vec{v}, \vec{w} \in \mathbb{R}^n$ and the first entry of \vec{v} is nonzero and the first entry of \vec{w} is zero then \vec{v} and \vec{w} are linearly independent. F
- F 2. If span $(\vec{v}_2, \vec{v}_2, \vec{v}_3) = \ker(A)$ then $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ is a basis for ker(A).
- 3. If span $(\vec{v_1}, \vec{v_2}) = \ker(A)$ and $\vec{v_1}$ and $\vec{v_2}$ are linearly independent then the dimension of $\ker(A)$ is 2. au

(1) $\dot{q}(a) = \Im \{ [\frac{a}{2}], [\frac{a}{2}] \}$

:. dim V = 2

form a basis

Sor V.

Dimension

P 1. Let
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 3 & 6 \end{bmatrix}$$
.

- 1. Find a basis for the kernel.
- 2. Find a basis for the image.
- 3. Determine the dimensions for each of the previously found subspaces.
- 4. Use the dimension of the image of A to determine the number of free variables for the system $A\vec{x} = \vec{0}$.
- 5. Use the dimension of the kernel of A to determine the rank of A.
- **P 2.** For which values of the constant k do the following vectors form a basis for \mathbb{R}^3 ?

2		$\left\lceil 1 \right\rceil$		[1]
2	,	k	,	-1
2		k^2		2

- **P** 3. Consider the plane $2x_1 + 3x_2 + x_3 = 0$ which is a subspace of \mathbb{R}^3 .
 - 1. Find a matrix whose kernel is the same as the plane.
 - 2. Find a basis for the plane.
 - 3. Find the dimension of the plane.

3.2

$$Def:$$
 Let $\vec{v_i}, \dots, \vec{v_m} \in \mathbb{R}^n$.

(a) The vector
$$\vec{V}_i$$
 is reduced ant is it is a linear combination
of $\vec{V}_1, \vec{V}_2, \dots, \vec{V}_{i-1}$

(b) The vectors
$$\vec{v}_1, ..., \vec{v}_m$$
 are linearly independent it
they don't contain a redundant vector. Otherwise the
set of vectors are not linearly independent.

(c) If
$$\vec{v}_1, ..., \vec{v}_m$$
 are in a subspace V and linearly
independent and they span V (=7 V=span($\vec{v}_1, ..., \vec{v}_m$))
then they form a basis for V.

Exi From the previous example
$$\begin{bmatrix} 1 & 1 & 2 \\ 1 & 1 & 4 \end{bmatrix}$$
 form a basis for in A. Also $\{\begin{bmatrix} 2 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$ is a basis.

Exi Let
$$A = \begin{bmatrix} 1 & 2 & 1 & 2 \\ 1 & 2 & 3 & 4 \end{bmatrix}$$
. Find a basis for $im(A)$.
 $rref[A] = rref \begin{bmatrix} 1 & 2 & 1 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$
 $r = rref [A] = rref \begin{bmatrix} 1 & 2 & 1 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$
 $r = rref [A] = r$

Thm: The set of vectors
$$\vec{v}_1, \dots, \vec{v}_m$$
 are linearly
independent if all columns of $rref[\vec{v}_1, \dots, \vec{v}_m]$
contain a pivot.

Exi. The vectors
$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
, $\begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$, $\begin{bmatrix} 7 \\ 8 \\ 9 \end{bmatrix}$ are not linearly independent since $\operatorname{tref} \begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{bmatrix} = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$.

Thm:
The vectors
$$\overline{v}_1, \dots, \overline{v}_m \in \mathbb{R}^n$$
 are linearly independent
if and only if $c_1, \overline{v}_1 + \dots + c_m \overline{v}_m = \overline{c}$ implies $c_1 = c_2 = \dots = c_m = 0$

Cor:
The vectors
$$\vec{v}_1, ..., \vec{v}_m$$
 form a basis for the subspace V
of \hat{R} if and only if every $\vec{v} \in V$ can be expressed uniquely
as $c_1\vec{v}_1 + ... + c_m\vec{v}_m = \vec{v}$. $c_1, ..., c_m$ are the coordinates

of
$$\vec{v}$$
 with respect to $\vec{v}_1, \dots, \vec{v}_m$.

$$\vec{v} = c_1 \vec{v_1} + \dots + c_m \vec{v_m} = d_1 \vec{v_1} + \dots + d_m \vec{v_m} = \vec{v}$$

$$\vec{v} = c_1 \vec{v_1} + \dots + c_m \vec{v_m} - d_1 \vec{v_1} + \dots + d_m \vec{v_m}$$

$$= (c_1 - d_1) \vec{v_1} + \dots + (c_m - d_m) \vec{v_m}$$

3.3
Thm: Let V be a subspaces of
$$\mathbb{R}^n$$
. Let
 $\vec{v_1}, \dots, \vec{v_p}$ be linearly independent in V. Let
 $\vec{w_1}, \dots, \vec{w_q}$ span V. Then $P \leq Q$.

Remarks
dim (im A) = rank A
dim (ker A) = the # of free variables of
$$A\vec{y} = \vec{o}$$

= null(A) nullity of A