Reading Questions 8

page 94: example 3

page 95: theorem 2.4.9

- 1. If $A = \begin{bmatrix} a & 1 \\ 0 & d \end{bmatrix}$ is invertible then a and d are both not 0. T
- 2. The determinant of $A = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$ is 5. \mathbf{F}

3. Write down one way to determine if $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is invertible. det $A \neq O$ or ref $A = I_A$

Section 2.4 The Inverse of a Linear Transformation (Part rank A = 2)

Inverse of linear transformation proofs If A^{-1} exists the a P 1. Write down the inverse of the product of two invertible matrices A and B. $A^{-1} = \frac{1}{deFA} \begin{bmatrix} a & -b \\ -c & a \end{bmatrix}$? P 2. Show that the inverse of a matrix A is unique. see notes P 3. Find all matrices $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ such that ad - bc = 1 and $A^{-1} = A$. Here ad - bc is called the determinant of A. P 4. Write down the determinant of the following matrices. Explain how they are related. $\begin{bmatrix} a & b \\ 0 & d \end{bmatrix}, \begin{bmatrix} a & 0 \\ 0 & d \end{bmatrix}, \begin{bmatrix} a & 0 \\ c & d \end{bmatrix}$

These matrices are upper triangular, diagonal, and lower triangular matrices.

 $\mathbf{P 5. Without using row operations, find the inverse of \begin{bmatrix} 1 & 4 & 4 \\ 0 & 2 & 1 \\ 0 & 2 & 4 \end{bmatrix} \text{ given that } \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 2/3 & -4/3 \\ 0 & 2/3 & -1/3 \\ 0 & 1 & 2 \end{bmatrix} \text{ and } \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 0 & 1 & 2 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 2/3 & -4/3 \\ 0 & 2/3 & -1/3 \\ 0 & -1/3 & 2/3 \end{bmatrix}.$

Q: Tor F IF $A\vec{x}=\vec{0}$ has a unique solution then A is invertible. T

Thm: Let A and B be invertible nxn matrices. Then 1. AA' - A'A = I_ $2 \cdot (AB)' = B'A'$ 3. A is unique pf: (1) $A^{-1}A^{-1}X = A^{-1}Y = X^{-1}$ for $X \in \mathbb{R}^{n}$. Hence $A^{-1}A = I_{n-1}$ Similarly $AA^{-1} = I_n$. AB $B'A' = A I A' = A A^{-} = I$ B'A' AB = B'IB = B'B = I 3) Suppose AC=CA=I Then A'AC = A'I =7 IC=A => c=A⁻¹. ... A⁻¹ is unique

Thm: Let A and B be non matrices such that BA = I. Then A and B are invertible.

pf: with that $A\vec{x} = \vec{b}$ has a unique solution for all \vec{b} , we will show $A\vec{x} = \vec{o}$ has a unique solution.

Next, $A\vec{\gamma} = \vec{o}$. We will show that $\vec{\gamma} = \vec{o}$.

Then $BA\vec{y} = B\vec{o} = \vec{o} = \vec{r} = \vec{y} = \vec{o} = \vec{r} = \vec{y} = \vec{o}$

Therefore $A\vec{x} = \vec{0}$ has a unique colution $\vec{0}$. Moreover rref A = I = 7 A is invertible.

Since A^{-1} exists we have BA = I = 7 $BAA^{-1} = IA^{-1}$ =7 $BI = A^{-1}$ =7 $B = A^{-1}$.

since A⁻¹ is invertible so is B.