Reading Questions 6

page 79: theorem 2.3.4

page 79: example 1

- 1. If A is an $n \times p$ matrix and B is an $p \times m$ matrix then BA is an $p \times p$ matrix. **F**
- 2. The *i*th entry of BA is a dot product. **T**
- 3. Compute $\begin{bmatrix} 2 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}$. You may write your matrix using the notation
 - $\begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} \qquad \begin{bmatrix} \mathbf{2} & \mathbf{8} \\ \mathbf{2} & \mathbf{4} \end{bmatrix}$

foq(x) = f(q(x))

to represent the matrix $\begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$.

Section 2.3 Matrix Product (Part 1)

Multiplying Matrices

- **P** 1. Let A and B be the $n \times m$ and $m \times p$ matrices respectively. What is the size of AB?
- **P 2.** Compute $\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 1 & 2 \end{bmatrix}$ and $\begin{bmatrix} 1 & 3 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$. In general, does AB = BA?
- **P** 3. Let the matrix representation of the linear transformations T and S be

[1	2	3		[1	2	3	1
2	2	2	and	2	2	2	1
3	2	1		3	2	1	1

respectively. Find the matrix representation of $T \circ S$.

Multiplying Matrices

- **P** 4. Compute the following product of matrices $\begin{bmatrix} 1 & 3 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 1 & 2 \end{bmatrix}$.
- **P 5.** Find a 3×3 matrix A which is not I_3 or $-I_3$ such that $AA = I_3$.
- **P 6.** Suppose $T(\vec{x})$ rotates \vec{x} counterclockwise by θ , and $S(\vec{x})$ rotates \vec{x} counterclockwise by $-\theta$.
 - 1. Find the matrix A of T and the matrix B of S.
 - 2. Compute AB.
 - 3. Interpret $(T \circ S)(\vec{x})$ geometrically.
- **P** 7. Let A, B, and C be $n \times n$ matrices. Show that A(B+C) = AB + AC.
- **P 8.** Find a 2×2 matrix A such that $A^2 \neq I$ and $A^4 = I$.

P 9. Let *P* be the matrix projection onto
$$\vec{u} = \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$$
. Is there a matrix *Q* such that $QP = I$?

2.4
Let T and S be LT such that
Thm:
$$T: \mathbb{R}^{p} \rightarrow \mathbb{R}^{n}$$
 and $S: \mathbb{R}^{m} \rightarrow \mathbb{R}^{p}$. Then
 $T \circ S: \mathbb{R}^{m} \neg 7\mathbb{R}^{n}$ is a LT.
P:
1) Let $\vec{x}, \vec{y} \in \mathbb{R}^{m}$ and $K \in \mathbb{R}$. Then
by $de^{\frac{p}{2}}$
 $T \circ S(\vec{x}^{2} + \vec{y}^{2}) \stackrel{e}{=} T(S(\vec{x}^{2} + \vec{y}^{2}))$
 e^{S-LT}
 $= T(g(\vec{x}^{2}) + S(\vec{y}^{2}))$
 $r (S(\vec{x}^{2})) + T(S(\vec{y}^{2}))$
 $r (S(\vec{x}^{2})) + T(S(\vec{y}^{2}))$
 $r (S(\vec{x}^{2})) + T(S(\vec{y}^{2}))$
 $r (S(\vec{x}^{2})) = T(S(K\vec{x}^{2}))$
 $= T \circ S(\vec{x}^{2}) = T(S(K\vec{x}^{2}))$
 $= T \circ S(K\vec{x}^{2}) = T(S(K\vec{x}^{2}))$
 $= T \circ S(K\vec{x}^{2})$
 $Ex: Let $T(\vec{x}^{2}) = \begin{bmatrix} -1 \circ 0 \\ 0 - 1 \end{bmatrix} \vec{x}^{2}$
 $cos qo -sin qo$
 $sin qo cos qo$$

$$T \circ S\left(\begin{bmatrix} 1 \\ 0 \end{bmatrix}\right) = T\left(S\begin{bmatrix} 1 \\ 0 \end{bmatrix}\right) = T\left(\begin{bmatrix} 0 \\ 1 \end{bmatrix}\right)$$
$$= \begin{bmatrix} 0 \\ -1 \end{bmatrix}$$
$$\int S(\overline{e_1}) = \overline{e_2}$$
$$f(\overline{e_1}) = T(\overline{e_2}) = -\overline{e_2}$$
gives the first column of the ToS matrix

$$T \circ S([°]) = T([°]) = [°]$$

 $T \circ 9(\overline{x}^{2}) = \begin{bmatrix} \circ & i \\ -1 & \circ \end{bmatrix} \overline{x}^{2}$

the second column of the Tos matrix

$$f: x \rightarrow Y$$

$$g: x \rightarrow Y$$

$$f = g \quad if \quad \forall x \in X$$

$$f(x) = g(x)$$

$$\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \overrightarrow{X} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \overrightarrow{X}$$
$$= \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

Thm:

$$A = \begin{bmatrix} \dot{\vec{v}}_{1}^{2} \cdots \dot{\vec{v}}_{m}^{2} \end{bmatrix}$$

$$BA = \begin{bmatrix} \dot{\vec{v}}_{1}^{2} \cdots \dot{\vec{v}}_{m}^{2} \end{bmatrix}$$

$$F_{\underline{x}} \quad \text{het} \quad T[\overline{x}] = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \overline{x}^{2} \text{ and } S(\overline{x}^{2}) = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \overline{x}^{2}.$$
Then the matrix for $(T \circ S)(\overline{x}^{2})$ is

$$\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ -1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Rules for matrix product

•
$$A^{N \times P} B^{Q \times m}$$
 then $(AB)^{N \times m}$ if and only if $p = Q$
• associative $(AB)C = A(BC)$
• $AB \neq BA$ always
• distributive $(A+B)C = AC + BC$
• $A^{N} = A \cdot A \cdot A \cdots A$

k-times