P 1. Compute $\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 1 & 2 \end{bmatrix}$ and $\begin{bmatrix} 1 & 3 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$. In general, does AB = BA?

P 2. Let the matrix representation of the linear transformations T and S be

$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 2 & 2 \\ 3 & 2 & 1 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} 1 & 2 & 3 & 1 \\ 2 & 2 & 2 & 1 \\ 3 & 2 & 1 & 1 \end{bmatrix}$$

respectively. Find the matrix representation of $T \circ S$.

P 3. Compute the following product of matrices $\begin{bmatrix} 1 & 3 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 1 & 2 \end{bmatrix}$. **P** 4. Find a 3×3 matrix A which is not I_3 or $-I_3$ such that $AA = I_3$.

P 5. Find a 2×2 matrix A such that $A^2 \neq I$ and $A^4 = I$.

P 6. Let P be the matrix projection onto $\vec{u} = \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$. Is there a matrix Q such that QP = I?

P 7. Let $A = \begin{bmatrix} 2 & 1 \\ 2 & 0 \end{bmatrix}$. Suppose $\vec{b} \in \mathbb{R}^2$. How many solutions does the linear equation $A\vec{x} = \vec{b}$ have?

P 8. Find the vectors that span the image of $\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \end{bmatrix}$.

P 9. Find a linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ whose image is the line spanned by the vector |-1] $\begin{vmatrix} 1\\2 \end{vmatrix}$.

P 10. Find the vectors that span the kernel of $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$.

P 11. Show that the line $x_1 + x_2 = 0$ in \mathbb{R}^2 is a subspace of \mathbb{R}^2 .

P 12. Determine if the following set is a subspace of \mathbb{R}^3 . Be sure to justify your answer.

$$W = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} : x + y + z = 1 \right\}$$

P 13. Let T be a linear transformation from \mathbb{R}^n to \mathbb{R}^m . Show that the kernel of T is a subspace of \mathbb{R}^n .

P 14. Let $A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 3 & 6 \end{bmatrix}$.

- 1. Find a basis for the kernel.
- 2. Find a basis for the image.
- 3. Determine the dimensions for each of the previously found subspaces.
- 4. Use the dimension of the image of A to determine the number of free variables for the system $A\vec{x} = \vec{0}$.
- 5. Use the dimension of the kernel of A to determine the rank of A.

P 15. Find $[\vec{x}]_{\mathfrak{B}}$ where $\mathfrak{B} = \{ \begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} 5\\6 \end{bmatrix} \}$ and $\vec{x} = \begin{bmatrix} -4\\4 \end{bmatrix}$. **P** 16. Find the \mathfrak{B} -matrix for the linear transformation $T(\vec{x}) = A\vec{x}$, where

$$A = \begin{bmatrix} 0 & 1 \\ 2 & 3 \end{bmatrix}$$

and $\mathfrak{B} = \{ \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \}.$

P 17. Compute the determinant for the matrix M.

$$M = \begin{bmatrix} 0 & 0 & 1 & 0 & 2 \\ 5 & 4 & 3 & 2 & 1 \\ 1 & 3 & 5 & 0 & 7 \\ 2 & 0 & 4 & 0 & 6 \\ 0 & 0 & 3 & 0 & 4 \end{bmatrix}$$

P 18. Let $A = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 2 & 1 \\ 0 & 2 & 1 \end{bmatrix}$. Compute $\det(A^T)$.

P 19. Given some numbers a, b, c, d, e and f such that

$$\det \begin{bmatrix} a & 1 & d \\ b & 1 & e \\ c & 1 & f \end{bmatrix} = 7,$$

find

$$\det \begin{bmatrix} a & 3 & d \\ b & 3 & e \\ c & 3 & f \end{bmatrix}.$$

P 20. Let $A = \begin{bmatrix} 1 & 3 & 0 & 3 \\ 0 & 3 & 0 & 3 \\ 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 2 \end{bmatrix}$. Suppose A and B are similar matrices. Find det(B) and

 $\det(A^{-1}).$

P 21. If
$$\begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix}$$
 is an eigenvector of the matrix $\begin{bmatrix} 4 & 1 & 1 \\ -5 & 0 & -3 \\ -1 & -1 & 2 \end{bmatrix}$ what is its eigenvalue?

P 22. Let \vec{v} be an eigenvector for A. Is \vec{v} an eigenvector for A^3 ? If so what are the eigenvalues? **P 23.** Let \vec{v} be an eigenvector for A. Is \vec{v} an eigenvector for $A + \sigma I$? If so what are the eigenvalues?

P 24. Let A be an $n \times n$ matrix.

- 1. Write down the characteristic equation of A.
- 2. Write down the characteristic polynomial of A where $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the eigenvalues of A.
- P 25. Find the eigenvalues for the matrix

-3	0	0	0	0	0
0	2	0	0	0	0
0	0	1	0	0	0
0	0	0	3	0	0
0	0	0	0	1	1
0	0	0	0	1	2

and their algebraic multiplicities.

P 26. Find the eigenvectors for the matrix $A = \begin{bmatrix} -3 & 0 & 4 \\ 0 & -1 & 0 \\ -2 & 7 & 3 \end{bmatrix}$.

 ${\bf P}$ 27. Give two different examples of a distribution vector.

P 28. Give an example of a positive transition matrix.

P 29. Let
$$A = \begin{bmatrix} 0.8 & 0.6 \\ 0.2 & 0.4 \end{bmatrix}$$
.

- 1. Use the example in today's lecture to find the closed formula for A^t where t is an arbitrary positive integer.
- 2. Find $\lim_{t \to \infty} A^t$.
- 3. Compute $\lim_{t \to \infty} A^t \begin{bmatrix} 0.5\\ 0.5 \end{bmatrix}$.