
Section 1.1 Introduction to Linear Systems (Part 1)

P 1. Find all solutions of the linear system by eliminating variables.∣∣∣∣ x+ 5y = 7
−2x− 7y = −5

∣∣∣∣
P 2. Find all solutions of the linear system by eliminating variables.∣∣∣∣∣∣

x+ 2y + 3z = 6
x+ 1y + 2z = 6
x+ 2y + z = 4

∣∣∣∣∣∣
P 3. Use a graph to find the number of solutions to the following system of equations.

y + 2 = 20

y + x = 16

Section 1.2 Matrices and Vectors (Part 1)

P 4. Consider the following matrix

A =

1 3 0
8 3 2
1 5 4

 .

1. List the rows and columns of A. List the diagonal entries of A.

2. What are the values for a13, a32, a23?

3. Is A a square matrix?

P 5. Let

x⃗ =


x1

x2

...
xn

 and y⃗ =


y1
y2
...
yn

 .

1. Compute x⃗ · y⃗ for the following vector.

x⃗ =

11
3

 y⃗ =

21
3


2. Show that c(x⃗+ y⃗) = cx⃗+ cy⃗.

P 6. Write the augment matrix for the following system of equations.∣∣∣∣∣∣
x4 + 2x5 − x6 = 2

x1 + 2x2 + x5 − x6 = 0
x1 + 2x2 + 2x3 − x5 + x6 = 2

∣∣∣∣∣∣
P 7. Put the following matrix in row reduced-echelon form and list the positions of the pivots.

1 4 0 2 0
0 0 1 4 0
0 2 1 3 0
0 0 0 0 1





P 8. Write the general solution for the following augmented matrix.
1 4 1 2 | 1
0 0 1 4 | 2
0 0 1 4 | 2
0 0 0 0 | 0


Section 1.3 On the Solutions of Linear Systems (Part 1)

P 9. For each of the following augmented matrices write its solutions and state the number of
solution it has.

A =

[
1 0 | 5
0 1 | 6

]
B =


1 0 2 1 | 0
0 1 3 1 | 0
0 1 3 1 | 0
0 1 3 1 | 0

 C =

[
0 1 0 | 2
0 0 1 | 3

]

P 10. For each of the following matrices write the rref and determine its rank.

A =

1 2 2
3 2 3
0 0 0

 B =

1 0 2
0 1 3
0 0 1

 C =

3 3 3
3 3 3
3 3 3


P 11. Suppose that A is an n×n coefficient matrix and the rank of A is n. How many solutions
does the system of equations have? Justify your answer.

P 12. Compute1 2 2
3 2 3
3 1 0

+

1 2 2
3 2 3
2 3 2

 , 4

1 2 2
3 2 3
2 3 2

 ,

1 2 2
3 2 3
3 1 1

13
2

 .

P 13. Compute the product Ax⃗ by using the rows of A.

A =

4 4 2
5 5 1
3 3 1

 x⃗ =

31
2


P 14. Let A =

1 3 2
2 3 2
1 3 1

 and x⃗ =

23
1

 . Write

1315
12

 as a linear combination of the columns

of A.

Section 2.1 Linear Transformations and Their Inverse
(Part 1)

P 15. Determine if the transformation T (

x1

x2

x3

) =

2x1

4x2

2x3

 is linear? If the transformation is

linear find the matrix representation of it.

Section 2.2 Linear Transformations in Geometry (Part 1)

P 16. Find the matrix corresponding to the transformation T (x⃗) = 2023x⃗. How does this
transformation transform the vector x⃗ ?



P 17. Let L be the line in R2 that consists of all scalar multiples of the vector

[
2
1

]
. Find the

orthogonal projection of the vector

[
1
1

]
onto L.

P 18. Find the matrix for the linear transformation that reflects vectors in R2 over the line
y = −2x.
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