
Section 5.2 Lagrange Theorem (Part 1)

Lagrange Results

P 1. Let G = S5 and H =< (12) >. What is |G : H|?

P 2. Let G be a group such that |G| = n. Prove a
n = e.

P 3. Let G be a finite group such that H  K  G. Prove |G : K| · |K : H| = |G : H|.
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5 2 Lagrange's Theorem
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