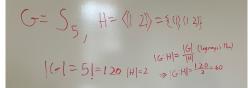
. p2	Let G be a group ST 101=n Prove a"=e
	16: Karl=161/Karl ET 20 Karl he
	=> h===a> m mEZ.
	$a^{1(\alpha)} = e \Rightarrow (a^{1(\alpha)})^m = e^m$
	$=7a^{1}a^{7}m=e \Rightarrow a^{7}=e$
	- Wet



Section 5.2 Lagrange Theorem (Part 1)

Lagrange Results

$$|G:\langle a \rangle| = \frac{|G|}{|G|} \in \mathbb{Z}$$

P 2. Let G be a group such that |G| = n. Prove $a^n = e$. **A E** h**P 3.** Let G be a finite group such that $H \le K \le G$. Prove $|G:K| \cdot |K:H| = |G:H|$.

Let & be a finite group such that H, k < 4. Then Presentation 16:K1 = 1H: HAK1 iff G=HK

00%.50 - correct	
90%50 - error 80%50 - major pr 0%50 - no shou	

P 1. Let $G = S_5$ and H = <(12) >. What is |G:H|?

5.2 Lagrange's Theorem

Let L be a group such that $H \leq L_1$ and $g \in G$. Then |H| = |Hg|

$$\frac{pf:}{pf:}$$
 Define $\sigma: H \rightarrow Hg$ where $\sigma(h) = hg$.
Then σ is clearly well define a ,
Suppose $\sigma(h,) = \sigma(h_2)$. Then $h_1g = h_2g = 7$ $h_1 = h_a$.
So σ is 1-1.
Suppose $\gamma \in Hg$. Then $\gamma = hg$ for some hell.
 $\sigma(h) = \gamma$. \therefore σ is a 1-1 correspondence.

Thm: Let G be a finite group such that
$$H \leq G$$
.
Then $|G:H| = \frac{|G|}{|H|}$ or $|G| = |G:H|||H||$.

We know
$$G/H$$
 partition G . Hence
 $|G| = |Hg_1| + |Hg_2| + \dots + |Hg_{|H||}|$
 $= |H| + |H| + \dots + |H|$ by len
 $IH| + |H| + \dots + |H|$ by len
 $IH| + |H| + \dots + |H|$

$$\frac{|\alpha|}{|H|} = |\alpha| + |\alpha| = |\alpha| = |\alpha| + |\alpha| = |\alpha| = |\alpha| + |\alpha| = |\alpha$$

cor: Let
$$G$$
 be a group such that $|G|$ is prime and $e \neq x \in G$. Then $G \cong Z_p$ p-prime.

$$\frac{p\varsigma:}{consider} \quad k \text{ is cyclic.}$$

$$\frac{1}{consider} \quad \langle x \rangle . \quad By \quad Lagrange's \quad Thm$$

$$\frac{1}{k \times 2} G \not\in Since \quad |u| \quad is \quad prime \quad and \quad x \not\models e$$

$$if \quad follows \quad Haf \quad |\langle x \times 2| = |h| ,$$

 $\therefore \quad \sigma(x) = 1 \quad defines \quad an \quad isomorphism \quad from \quad (a \ to \ z_p).$ $(a) = 5 \quad Gr \cong z_s \qquad (a = (x)) \quad z_s = (1)$ $x \rightarrow 1 \quad x^2 \rightarrow 2 \quad x^3 \rightarrow 3 \quad x^4 \rightarrow 4 \quad a = -7 \quad 0$