Reading Questions

page 110: Definition 5.1

- 1. Let G be a group such that $x \in G$ and $H \subseteq G$. If Hx is a right cosets then H must be a subgroup of G. Т
- 2. Let G be a group such that $x \in G$ and $H \leq G$. Then <u>Hx</u> is a subgroup of G. F
- 3. Let $G = \mathbb{Z}_5$ and $H = \langle 2 \rangle$ and x = 3. List the elements of Hx. = \mathcal{E}_{g} $H= \overline{2}_{5} = 7$ $H_{K} = \overline{2}_{5}$ Section 5.1 Translation Action and Cosets (Part 1)

Cosets

P 1. Let $G = S_4$ and $H = \langle (123) \rangle$. List the right cosets of H in G.

Index

P 2. Let $G = S_4$ and H = <(123) >. What is |H:G|? **P** 3. Let $G = D_8$ and $H = \langle R_{90} \rangle$. List the left cosets of H in G. + clations A 1' CACOTS 2

Def: Let G be a group such that
$$H \leq G$$
 and $x \in G$.
 $Hx := \{hx : h \in H\}$ - Right cosets of H in G
 $xH := \{xh : h \in H\}$ - Left cosets of H in G
 $Ex:$ Let $G = D_g$ and $H = R_{1g0}$. Then
 $HR_{q0} = \{R_0R_{q0}, R_{1g0}^R = 0\} = \{R_{q0}, R_{270}\}$.
 $= R_{q0}H$

 E_{X} : Let $G = S_3$ and H = S(12)?. Then

$$H(i) = H = H(iz) = \xi(i), (iz) = O_{G}((iz))$$
 H acts on G
h-g=hg

$$H(13) = \{ (1)(13), (12)(13) = \{ (13), (132) \} = H(152)$$
$$H(23) = \{ (1)(23), (12)(23) \} = \{ (23), (123) \} = H(123)$$

$$pf:$$
 (=>) Suppose $Hx = Hy$. Since $H \leq G$, $e \in H$. Hence
 $y = ey \in Hy$. Since $Hx = Hy$, $y \in Hx$.

(<=) Suppose
$$\underline{y \in Hx}$$
.
 $(Hx \in Hy)$
Let $z \in Hx$. Then $\exists h_{i,j}h_{a} \in H$
s.t. $z = h_{i,j}x$ and $y = h_{a,j}x$. Hence $x = h_{a}^{'}Y = 7$ $z = h_{i}h_{a}^{'}Y$.
Thus $z \in Hy$.

$$(H_{y} \in H_{x})$$

Now let $z \in H_{y}$. Hence $z = h_{3}y_{1}$ h_{3} $\in H$.
Then $z = h_{3}h_{1}x = 3$ $z \in H_{x}$. $H_{x} = H_{y}$.
 $H_{x} = H_{y}$.

1em: Hg=H (=>

lem: Let a be a group such that H ≤ G. Then

(1) $| [G: \{23\}] = | [G] |$ (2) | [G: G] = |(3) | [G: H] = # of [eff cosets of H]

γH