P 1. List all 3 cycles in S_{4}.
P 2. Prove the following statement. Let n be a positive integer. If σ and τ are disjoint cycles in S_{n} then $\sigma \tau=\tau \sigma$.

P 3. Write $(123)(24)(321)$ as a product of disjoint cycles.
P 4. Write $(1234)(231)$ as a product of transpositions.
P 5. What is the order of $(123)(25)(46)$ in S_{7} ?
P 6. Let $\sigma, \tau \in S_{n}$. Prove or disprove. If σ and τ are both odd then $\sigma \tau$ is even.
P 7. List the elements of A_{4}.
P 8. Let $\Omega=\{\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}\}$. Let $\sigma=(123)$. Then S_{4} acts on Ω where $\sigma \cdot\{a, b\}=\{\sigma(a), \sigma(b)\}$. Compute $\sigma \cdot\{1,4\}$ and $\sigma \cdot\{2,3\}$ where $\sigma=(123)$.

P 9. Find a subgroup of S_{4} which is isomorphic to Z_{4}. Hint Z_{4} acts on $\{0,1,2,3\}$ where $g \cdot a=g+a \bmod 4$.

P 10. Let $G=G L(n, \mathbb{R})$ and let Ω be the set of all real $n \times n$ matrices. Let $A \in G$ and $B \in \Omega$. Define $A \cdot B=B A B^{-1}$. Show that G acts on Ω.

P 11. Let G be a group such that $H \leq G$. Prove or disprove: H acts on G where $h \cdot g=g h^{-1}$.
P 12. Let $G=Z_{6}$. Let $H=<3>$ and $g=2$. Write the elements of $g H g^{-1}$.
P 13. Let D_{8} act on $\{1,2,3,4\}$. Let $S=\{a, a b\}$. Draw the Cayley graph.
P 14. Let D_{8} act on $\{1,2,3,4\}$. Find $\operatorname{Stab}_{D_{8}}(3)$.
P 15. Let S_{4} act on $\{1,2,3,4\}$ defined by the action $\sigma \cdot a=\sigma(a)$. Find $\operatorname{Stab}_{S_{4}}(2)$.
P 16. Let $a \sim b$ if $a, b \in \mathbb{Z}$ and $a \leq b$. Find $\operatorname{cl}(2)$.
P 17. Let $G=S_{7}$. Let $H=<(23),(132)>$ act on $\Omega=[7]$ where $h \cdot a=h(a)$ for $h \in H$ and $a \in \Omega$. What are the orbits of Ω ?

P 18. What are the conjugacy classes of S_{4} ?
P 19. Let $(1432),(1324) \in S_{4}$. Find $\sigma \in S_{4}$ such that $(1432)=\sigma(1324) \sigma^{-1}$.
P 20. Let $G=S_{4}$ and $H=<(123)>$. List the right cosets of H in G.
P 21. Let $G=S_{5}$ and $H=<(12)>$. What is $|G: H|$?

