S.2 Gram-Schmidt and $Q R$ Factorization

Def: Vectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{m}$ are orthonormal if

$$
\vec{u}_{i} \cdot \vec{v}_{j}=0 \quad \text { and } \quad\left\|\vec{u}_{i}\right\|=1
$$

Ex:
$\vec{e}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right] \quad\left[\begin{array}{l}0 \\ 1\end{array}\right]=\vec{e}_{2}$ are orthonormal as

$$
\begin{aligned}
\vec{e}_{1} \cdot \vec{e}_{2}=1.0+0.1=0 \text { and } & \left\|\vec{e}_{1}\right\|=\sqrt{1^{2}+0^{2}} 1 \\
& \left\|\vec{e}_{2}\right\|=\sqrt{0^{2}+1^{2}}=1
\end{aligned}
$$

P Show that $\left[\begin{array}{c}\cos \theta \\ \sin \theta\end{array}\right]$ and $\left[\begin{array}{c}-\sin \theta \\ \cos \theta\end{array}\right]$ are orthonormal
vectors.

Thy: Let $\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{m}$ be orthonormal vectors and a basis for R^{n}. Then

$$
\operatorname{proj}_{v} \vec{x}^{\prime}=\vec{x}^{\prime \prime}=\left(\overrightarrow{u_{1}} \cdot \vec{x}\right) \vec{u}_{1}+\cdots+\left(\vec{u}_{m} \cdot \vec{x}\right) \vec{u}_{m}
$$

Recall:

and $\quad \vec{v}=\vec{v}^{\prime \prime}+v^{2}$

So $\quad \vec{v}^{\perp}=\vec{v}-\vec{v}^{\prime \prime}=\vec{v}-\operatorname{proj} \vec{v}$

orthonormal vectors.

Ex:
Find orthonormal vectors \vec{v}, and \vec{v}_{2} in the subspace

$$
v=\operatorname{span}\left(\left[\begin{array}{l}
1 \\
\vdots \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
a \\
a \\
1
\end{array}\right]\right) .
$$

Let $\quad \vec{v}_{1}=\left[\begin{array}{l}1 \\ i \\ 1\end{array}\right]$ and $\vec{v}_{2}=\left[\begin{array}{l}1 \\ a \\ a \\ 1\end{array}\right]$
We want to find $\frac{\vec{v}_{1}}{\left\|\vec{v}_{1}\right\|}$ and $\frac{\vec{v}_{2}^{\perp}}{\left\|\vec{v}_{2}^{\perp}\right\|}$.

$$
\begin{aligned}
& \vec{u}_{1}=\frac{\vec{v}_{1}}{11 \vec{v}_{1} \|}=\frac{1}{\sqrt{1^{2}+2^{2}+r^{2}+1^{2}}}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]=\frac{1}{2}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \\
& \vec{v}_{2}=\frac{\vec{v}_{2}^{\prime}}{\left\|\vec{v}_{2}^{2}\right\|}, \quad \vec{v}_{2}^{\perp}=\vec{v}_{2}-p r \dot{o}_{v} \vec{v}_{2} \\
& =\vec{v}_{2}-\left(\vec{v}_{1} \cdot \vec{v}_{2}\right) \vec{v}_{1} \leftarrow B_{y} \text { previous theorem } \\
& \vec{u}_{1} \cdot \overrightarrow{v_{2}}=\frac{1}{2}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
a \\
a \\
1
\end{array}\right]=\frac{1}{2}(1+a+a+1)=10 \\
& \left(\vec{u}_{1} \cdot \vec{v}_{2}\right) \vec{u}_{1}=\frac{10}{2}\left[\begin{array}{l}
1 \\
\vdots \\
1
\end{array}\right] \\
& \left\|\vec{v}_{2}^{\prime}\right\|=\sqrt{4^{2}\left((-1)^{2}+i^{2}+i^{2}+(1)^{2}\right)}=4 \cdot 2=8 \\
& \overrightarrow{v_{2}}=\left[\begin{array}{l}
1 \\
a \\
a \\
1
\end{array}\right]-\left[\begin{array}{l}
5 \\
5 \\
5 \\
5
\end{array}\right]=\left[\begin{array}{c}
-4 \\
4 \\
a \\
-4
\end{array}\right] \\
& \vec{v}_{2}=\frac{1}{8}\left[\begin{array}{c}
-4 \\
4 \\
4 \\
-4
\end{array}\right]=\frac{1}{2}\left[\begin{array}{c}
-1 \\
1 \\
1 \\
-1
\end{array}\right]
\end{aligned}
$$

check: $\quad \vec{v}_{1} \cdot \vec{v}_{1}=\vec{u}_{2} \cdot \vec{v}_{2}=0$ and $\vec{v}_{1} \cdot \vec{v}_{2}=1$

Ex: Find $R^{2 \times 2}$ such that $\quad\left[\begin{array}{ll}1 & 1 \\ \vdots & a \\ 1 & a \\ 1 & 1\end{array}\right]=\underbrace{\left[\begin{array}{cc}1 / 2 & -1 / 2 \\ 1 / 2 & 1 / 2 \\ 1 / 2 & 1 / 2 \\ 1 / 2 & -1 / 2\end{array}\right]}_{Q} R$
Solve

$$
\begin{aligned}
& {\left[\begin{array}{l}
\vdots \\
\vdots \\
1
\end{array}\right]=\frac{1}{2}\left[\begin{array}{cc}
1 & -1 \\
\vdots & \vdots \\
1 & -1
\end{array}\right] \overrightarrow{r_{1}} \quad \text { and }\left[\begin{array}{l}
1 \\
\vdots \\
1
\end{array}\right]=\frac{1}{2}\left[\begin{array}{cc}
1 & -1 \\
1 & 1 \\
1 & 1 \\
1 & -1
\end{array}\right] \vec{r}_{2}} \\
& {\left[\begin{array}{cccc}
2 & 1 & -1 \\
2 & 1 & 1 \\
2 & 1 & 1 \\
2 & 1 & -1
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
2 & \vdots & -1 \\
2 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{c:cc}
2 & 1 & -1 \\
0 & 0 & 2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \overrightarrow{r_{1}}=\left[\begin{array}{l}
2 \\
0
\end{array}\right]} \\
& {\left[\begin{array}{cccc}
1 & -1 & 2 \\
1 & 1 & \vdots & 18 \\
1 & -1 & 18 \\
1 & -1
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & -1 & 2 \\
1 & 1 & 18 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & -1 & 2 \\
0 & 2 & 16 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \quad \vec{r}_{2}=\left[\begin{array}{l}
10 \\
8
\end{array}\right]} \\
& R=\left[\begin{array}{ll}
2 & 10 \\
0 & 8
\end{array}\right]
\end{aligned}
$$

P
Find orthonormal vectors \vec{v}, and \vec{v}_{2} in the subspace

$$
v=\operatorname{span}\left(\left[\begin{array}{c}
2 \\
1 \\
-2
\end{array}\right],\left[\begin{array}{c}
2 \\
7 \\
-8
\end{array}\right]\right) .
$$

$p:$

$$
\text { Find a } 2 \times 2 \text { matrix } R \text { such that }\left[\begin{array}{cc}
2 & 2 \\
1 & 7 \\
-2 & 8
\end{array}\right]=\frac{1}{3}\left[\begin{array}{cc}
2 & -2 \\
1 & 2 \\
-2 & -1
\end{array}\right] R
$$

