\mathbf{P} 1. Find the vectors that span the image of $\left[\begin{array}{llll}1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4\end{array}\right]$.
P 2. Find the vectors that span the kernel of $\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$.
P 3. Show that the line $x_{1}+x_{2}=0$ in \mathbb{R}^{2} is a subspace of \mathbb{R}^{2}.
P 4. Let T be a linear transformation from \mathbb{R}^{n} to \mathbb{R}^{m}. Show that the kernel of T is a subspace of \mathbb{R}^{n}.

P 5. Find the \mathfrak{B}-matrix for the linear transformation $T(\vec{x})=A \vec{x}$, where

$$
A=\left[\begin{array}{ll}
0 & 1 \\
2 & 3
\end{array}\right]
$$

and $\mathfrak{B}=\left\{\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}$.
P 6. Suppose $\left[\begin{array}{ll}1 & 2 \\ 4 & 3\end{array}\right]=S\left[\begin{array}{cc}5 & 0 \\ 0 & -1\end{array}\right] S^{-1}$. Find a matrix C which is similar to $\left[\begin{array}{cc}9 & 8 \\ 16 & 17\end{array}\right]$.
P 7. Compute the determinant for the matrix M.

$$
M=\left[\begin{array}{lllll}
0 & 0 & 1 & 0 & 2 \\
5 & 4 & 3 & 2 & 1 \\
1 & 3 & 5 & 0 & 7 \\
2 & 0 & 4 & 0 & 6 \\
0 & 0 & 3 & 0 & 4
\end{array}\right]
$$

P 8. Find $\operatorname{det}\left(A^{2}\right)$ for $A=\left[\begin{array}{cccc}1 & 81 & 80 & 88 \\ 0 & 2 & 86 & 84 \\ 0 & 0 & 3 & 87 \\ 0 & 0 & 0 & 4\end{array}\right]$
P 9. Let $A=\left[\begin{array}{llll}1 & 4 & 6 & 8 \\ 1 & 2 & 3 & 8 \\ 1 & 2 & 3 & 4 \\ 1 & 2 & 6 & 8\end{array}\right]$. Compute the determinant of A using elementary row operations and determine if A is invertible.

P 10. Does there exist an invertible matrix S and a diagonal matrix B such that $A S=S B$ where A is the linear transformation which rotates a vector 180° in \mathbb{R}^{2} ? Explain your answer.

P 11. Let \vec{v} be an eigenvector for A. Is \vec{v} an eigenvector for $A+\sigma I$? If so what are the eigenvalues?

P 12. Find the eigenvalues for the matrix $\left[\begin{array}{ccc}-3 & 0 & 4 \\ 0 & -1 & 0 \\ -2 & 7 & 3\end{array}\right]$.
\mathbf{P} 13. Find the eigenvectors for the matrix $A=\left[\begin{array}{ccc}-3 & 0 & 4 \\ 0 & -1 & 0 \\ -2 & 7 & 3\end{array}\right]$.
P 14. For each eigenvalue λ of a find the algebraic and geometric multiplicity of λ.
P 15. Suppose $\vec{x}, \vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ are distribution vectors. Let the columns of A are the vectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$. Is $A \vec{x}$ a distribution vector. Explain your answer.

P 16. Let $A=\left[\begin{array}{ll}0.8 & 0.6 \\ 0.2 & 0.4\end{array}\right]$.

1. Find $\lim _{t \rightarrow \infty} A^{t}$.
2. Compute $\lim _{t \rightarrow \infty} A^{t}\left[\begin{array}{l}0.5 \\ 0.5\end{array}\right]$.

P 17. Find orthonormal vectors \vec{u}_{1} and \vec{u}_{2} in the subspace $V=\operatorname{span}\left(\left[\begin{array}{c}2 \\ 1 \\ -2\end{array}\right],\left[\begin{array}{c}2 \\ 7 \\ -8\end{array}\right]\right)$ such that $V=\operatorname{span}\left(\vec{u}_{1}, \vec{u}_{2}\right)$. Check your answer.
P 18. Find a 2×2 matrix R such that $\left[\begin{array}{cc}2 & 2 \\ 1 & 7 \\ -2 & -8\end{array}\right]=\frac{1}{3}\left[\begin{array}{cc}2 & -2 \\ 1 & 2 \\ -2 & -1\end{array}\right] R$. Check your answer.

