Reading Questions 16

page 291 Definition 9.2.4

page 291 Example 4

- 1. A bipartite graph is a graph with no edges.
- 2. A complete bipartite graph is a graph with all possible edges.
- 3. Suppose $V(G) = \{1, 2, 3, 4\}$ and $E(G) = \{\{1, 2\}, \{2, 3\}, \{3, 4\}, \{4, 1\}\}$. Give a bipartition sets V_1 and V_2 for the graph G.

Section 9.2 Definitions and Basic Properties (Part 1)

Definitions and Basic Properties

P 1. Compute V(G) and E(G) for the following graph.

P 2. Compute $\sum_{v \in V(H)} \deg v$ for the following graph. Also compute |E(H)|.

P 3. What is the maximum number of edges in a graph containing *n* vertices?

 ${\bf P}$ 4. Prove that at any party an even number of people must have shaken an odd number of hands.

P 5. Let G be a graph and p = 2k + 1 for some integer k. Prove that if deg v = p for all $v \in V(G)$ then $p \mid |E(G)|$.