Reading Questions 9

page 98

- 1. The binary relation \leq is the relation $\{(a, b) | a, b \in \mathbb{R} \text{ and } a \leq b\}$.
- 2. A relation R is transitive if $(a, b), (b, c) \in R$ then $(a, c) \in R$.
- 3. What is the additive inverse of 5?

Section 4.1 The Division Algorithm (Part 1)

Well-Ordering Principle

P 1. Which of the following sets contains a least element?

 $(a) \mathbb{N} \quad (b) \mathbb{Z} \quad (c) (2, 8]$

The Division Algorithm

P 2. Find integers q and r such that 51 = 7q + r where $0 \le r < 7$.

P 3. The Division Algorithm: Let $a, b \in \mathbb{Z}, b \neq 0$. Prove there exist unique integers q and r, with $0 \leq r < |b|$ such that a = qb + r. Hint: Try using proof by cases.

- Case 1: $a = 0, b \neq 0$.
- Case 2: a, b > 0.
- Case 3: a > 0, b < 0.
- Case 4: a < 0, b > 0.
- Case 5: a < 0, b < 0.

P 4. Find integers q and r, with $0 \le r < 20$ such that -3,315 = 20q + r.

P 5. Find integers q and r, with $0 \le r < 20$ such that 3,315 = -20q + r.

P 6. Using the division algorithm, show that if $x \in \mathbb{Z}$ then x = 2k for some integer k or x = 2k + 1 for some integer k.