Reading Questions 7

page 80 Example 14

page 82 Example 19

- 1. The inverse of a function is a set.
- 2. Let f be a function from the set A to the set B. Then the range of the inverse of f is A.
- 3. The composition of two functions is a set.

Section 3.2 Inverse and Composition (Part 1)

Inverses

P 1. Find the inverse relation of the following relation.

$$R = \{(1,8), (3,3), (4,3), (2,1), (5,2)\}\$$

P 2. Determine if the following functions from the set $\{1, 2, 3, 4, 5\}$ itself have an inverse. If so find the inverse.

 $f = \{(1,3), (3,4), (4,3), (2,1), (5,2)\}$ and $g = \{(1,2), (3,1), (2,4), (4,3), (5,5)\}$

Compositions

P 3. Let $A = \{1, 2, 3, 4\}, B = \{a, b, c, d\}$ and $C = \{r, s, t, u, v\}$ and define the functions $f : A \to B$ and $g : B \to C$ by

$$f = \{(1, b), (2, d), (3, a), (4, a)\}$$
 and $g = \{(a, u), (b, r), (c, r), (d, s)\}$

Determine $g \circ f$ and $(g \circ f)(1)$.

Theorem

The functions $f: A \to B$ and $g: B \to A$ are inverses of each other if and only if

$$(g \circ f)(a) = a$$
 and $(f \circ g)(b) = b$

for all $a \in A$ and for all $b \in B$.

P 4. Let $f: A \to A$ and $g: A \to A$ be functions. Show that $(f \circ g)^{-1} = g^{-1} \circ f^{-1}$.

P 5. Let $f : A \to B$ and $g : B \to C$ be functions. Prove that if $g \circ f$ is one-to-one and f is onto then g is one-to-one.