Reading Questions 6

page 74 Example 2

page 74 Example 3

- 1. A function is a set.
- 2. Let f be a function from the set A to the set B. Then the range of f is B.
- 3. All functions are one-to-one.
- 4. What does it mean for a function to be a one-to-one?

Section 3.1 Basic Terminology (Part 1)

Functions as Sets

P 1. Write a binary relation from the set $\{1, 2, 3\}$ to the set $\{1, 2, 3\}$.

P 2. Is the set $\{(1,2), (3,1), (2,1)\}$ a function from the set $\{1,2,3\}$ to the set $\{1,2,3\}$.

P 3. Let $A = \{1, 2, 3\}$ and $B = \{a, b, c, d\}$. Give an example of a relation from A to B containing exactly three elements such that the relation is not a function from A to B.

P 4. Let $A = \{a, b, c, d\}$ and $B = \{x, y, z\}$. Then $f\{(a, y), (b, z), (c, y), (d, z)\}$ is a function from A to B. Determine dom f and rng f.

P 5. Let $A = \{w, x, y, z\}$ and $B = \{r, s, t\}$. Give an example of a function $f : A \to B$ that is neither one-to-one nor onto.

Functions as Sets Proofs

P 6. Show that the function $f = \{(x_1, x_2) | x_1^2 = x_2\}$ from \mathbb{N} to \mathbb{N} is one-to-one. Is the function onto?

P 7. Let $f = \{(x, y) | y = 3x + 5\}$ be the function from \mathbb{N} to \mathbb{N} . Show that f a bijective.

P 8. Determine the values for $|\frac{\pi}{-3}|, \lfloor \pi \rfloor, \lceil e \rceil$ and $\lfloor \pi + e \rfloor$.