Reading Questions 2

page 10 Pause 10

page 12 Problem 1

- 1. The statements P and Q are equivalent if $P \iff Q$.
- 2. If $P \to Q \to R \to P$ is a true statement then P, Q, and R are equivalent statements.
- 3. Rewrite the statement "A matrix with determinant 1 is invertible." as an implication.

Section 0.1 Compound Statements (Part 2)

More on Truth Values

P 1. In some cases, proving an equivalent statement may be easier than proving the actual statement. Determine if the following statements are equivalent.

$$\neg (P \lor Q) \iff ((\neg P) \land (\neg Q))$$

P 2. Determine if the following statements are equivalent.

$$\neg (P \land Q) \iff ((\neg P) \lor (\neg Q))$$

P 3. Use a truth table to show that $[(P \to Q) \land (Q \to R)] \to (P \to R)$.

More Compound Statements

P 4. Math symbols are useful when sketching a proof. Use the symbols $\neg, \rightarrow, \forall$ (for all) and \exists (there exists) to transcribe the following statements into logical notation.

- 1. If y = 1, then xy = x for any x.
- 2. There is no solution to $x^2 = y$ unless y > 0.
- 3. x < z is a necessary condition for x < y and y < z.
- 4. If x < y then for some z such that z < 0, xz > yz.
- 5. There is an x such that for every y and z, xy = xz.

P 5. Negations are often used to show that a statement is false. Write the negation of the following statement.

R: The integer 3 is even.

P 6. Write the contrapositive of the implication $Q \Rightarrow P$ from the previous problem.