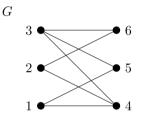
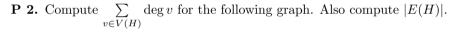
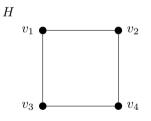
Reading Questions 16

page 291 Definition 9.2.4

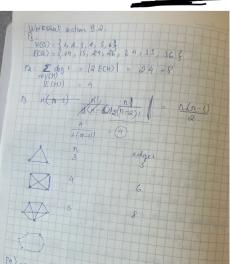

page 291 Example 4


- 1. A bipartite graph is a graph with no edges. \mathbf{F}
- 2. A complete bipartite graph is a graph with all possible edges. \mathbf{F}
- 3. Suppose $V(G) = \{1, 2, 3, 4\}$ and $E(G) = \{\{1, 2\}, \{2, 3\}, \{3, 4\}, \{4, 1\}\}$. Give a bipartition sets V_1 and V_2 for the graph G.


(بَرْبَ) کَنَوْمَ Section 9.2 Definitions and Basic Properties (Part 1)

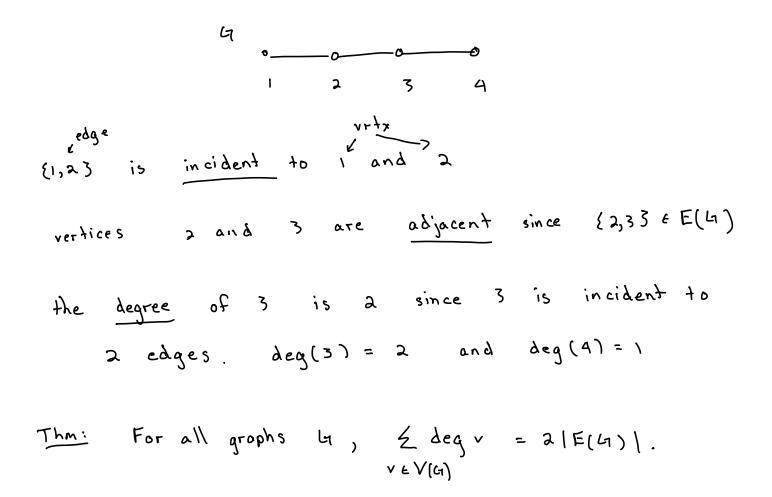
Definitions and Basic Properties

P 1. Compute V(G) and E(G) for the following graph.



P 3. What is the maximum number of edges in a graph containing n vertices? , deg \checkmark

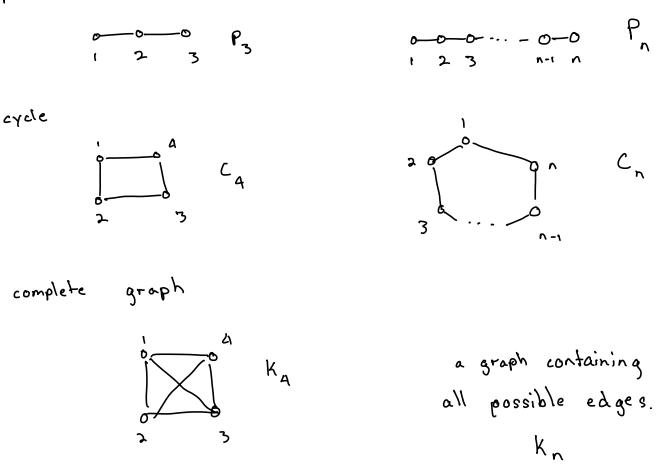
P 4. Prove that at any party an even number of people must have shaken an odd number of hands. $\xi \partial eq = 2|E|$


P 5. Let G be a graph and p = 2k + 1 for some integer k. Prove that if deg v = p for all $v \in V(G)$ then $p \mid |E(G)|$.

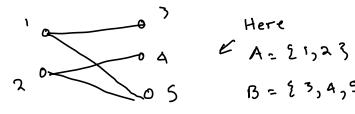
	, ,		· >, 2 ·) ·) / 2 · ·		
deg(V))=2, [E(H)]=	degluz)= 2, deg	(N3)=2, d.	eg (V4) = 1	
IE (H) I =	4 4 4 2	TL=4	(2) = 8		

$$nef:$$
 A graph G is a pair consisting of a
vertex set V(G) and an edge set E(G)
(whose elements are subsets of V(G) of size
2 called edges).

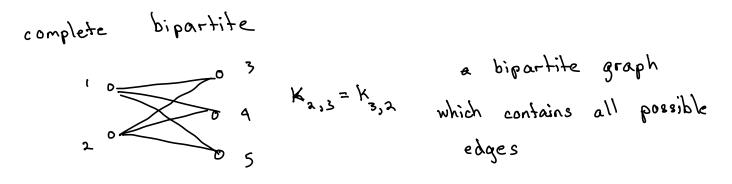
$$E_{\underline{x}}$$
. The graph G has a vertex set
 $V(L_{\overline{x}}) = \{1, 2, 3, 4\}$ and an edge set
 $E(G_1) = \{\{1, 23, \{2, 33, \{3, 4\}\}\} = \{12, 23, 34\}$


آ

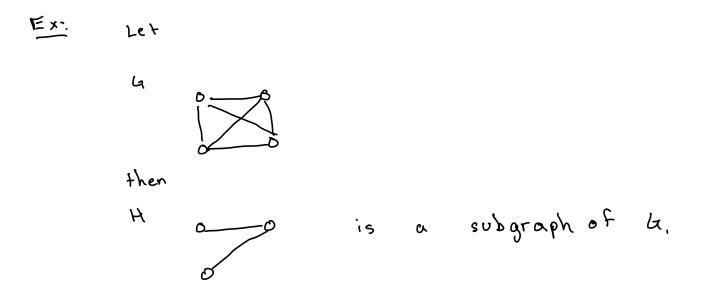
Thm: For any graph the number of vertices of odd degree is even.


=7
$$\leq 2K_{i}+1$$
 is even $v_{i} \in A$

Therefore | Al is even,


path

bipartite



Here V(G) = AUB E = 21,23 $A \cap B = \emptyset$ B = 23,4,53 $E(A) = E(B) = \emptyset$

 $|K^{\nu,m}| = \zeta$

Des: The graph H is a subgraph of G is
$$V(H) \subseteq V(G)$$
 and $E(H) \subseteq E(G)$.

