Reading Questions 11

page 162 Definition 5.2.1

page 163 Definition 5.2.2

page 164 Definition 5.2.3

1. The sequence $-17, -12, -7, -1, 3, \ldots$ is an arithmetic sequence. \blacktriangleright

- 2. The sequence 2, 6, 18, 54, \dots is a geometric sequence. τ_{12}
- 3. The first term in the Fibonacci sequence is 0. \blacktriangleright

4. Is the sequence $1, 1, 1, \ldots$ an arithmetic sequence or geometric sequence or both?
both

 $t = 1$ $\Delta = 0$

Section 5.2 Recursively Defined Sequences (Part 1)

Recurrence Relation

P 1. Write out the first 6 terms of the sequence $f : \mathbb{N} \to \mathbb{Z}$ such that $f : a \mapsto 3a$.

P 2. Is the equation $a_k = 2$ where $k \ge 1$ a recurrence relation? If so, write out the sequence and the 5*th* term of the sequence.

P 3. What is the solution to the recurrence relation $a_{k+1} = 3a_k$ where $k \ge 0$ and $a_0 = 1$.

P 4. Let $a_1 = 1$ and $a_n = 2a_{n-1} + 1$ for $n \ge 2$. Write out the first 6 terms. Conjecture a solution for the recurrence relation.

P 5. Let $a_1 = 1, a_2 = 3$ and $a_n = 2a_{n-1} - a_{n-2}$ for $n \ge 3$. Write out the first 6 terms. Conjecture a solution for the recurrence relation.

Strong Principle of Mathematical Induction

P 6. Let $a_1 = 1, a_2 = 3$ and $a_n = 2a_{n-1} - a_{n-2}$ for $n \geq 3$. Conjecture a solution for the recurrence relation and prove it using Strong Mathematical Induction.

P 7. Let $a_0 = 1$, $a_1 = 4$, and $a_n = 4a_{n-1} - 4a_{n-2}$ for $n \ge 2$. Prove that $a_n = 2^n(n+1)$ for all $n \geq 0$.

P 8. Prove $\forall n \geq 12^{-3} s, t \in \mathbb{N} \cup \{0\}$ such that $n = 3s + 7t$.

Def: A sequence is a function (or infinite list of elements) whose domain is some subset of integers and range is a set of elements (real numbers).

$$
\begin{array}{lll}\n\text{Ex.} & \text{a. } \text{a. } \text{a. } \text{a. } \text{a. } \text{sequence} \\
\text{S.} & \text{a. } \text{sequence} \\
\text{S.} & \text{b. } \text{b. } \text{b. } \text{c. } \text{c. } \text{d. } \text
$$

$$
1, 4, 4, 16, 25, ...
$$
 has the n^{4h} term 0.5

 $n = 6$ =7 6^2 - 6^{4h} term of the sequence

Def: A recurrence relation is an equation where the nth term of the sequence is expressed in terms of the other terms of the sequence.

Ex:

\nThe equation
$$
a_{\mu} = 2a_{\mu-1}
$$
 is a recurrence relation where $a_{\rho} = 1$ and K^2 !

\n1, 2, 4, 8, 16, ...

$$
E_{x}
$$
 $a_{N} = 2 a_{K-1} + 3 a_{K-2}$ for $k \ge 2$

$$
\alpha_{0} = 1 \qquad \alpha_{1} = 2
$$

Def: The solution of the recurrence relation is the nth term of the sequence.

$$
E_{x}
$$
\n
$$
a_{0} = 1 \t a_{n} = 2 a_{k-1} \t R^{2}
$$
\n
$$
a_{n} = a^{n} \t R^{2}
$$

Here is a solution for the recurrence relation.

Find the solution for the following recurrence relation. E_{X} $a_{0} = 1$ $a_{1} = 4$ $a_{n} = 4a_{n-1} - 4a_{n-2}$ for K 22.

$$
a_0 = 1
$$
 $a_1 = 4$ $a_2 = 4 \cdot 4 - 4 \cdot 1 = 12$
 $a_3 = 4(12-4) = 32$ $a_4 = 4(32-12) = 80$

$$
1, 4, 12, 32, 80, 192, \ldots
$$

conjecture 12×2^6 4 = 2.2 $12 = 3 \times 2^7$ $32 = 4.2$ ³ $80 = 5.2$ ⁴

 $a_{n} = n \cdot 2$ for $n \ge 1$.

Strong Induction

Let
$$
P(n)
$$
 be a statement concerning the integers
\n $\{n_{o_1}n_{1},\dots\}$. Suppose
\n(1) $P(n_o)$ is true, an
\n(2) $P(n_o) \wedge P(n_i) \wedge \dots \wedge P(n_{k_i}) \Rightarrow P(n_{k+i})$
\nfor all $k \ge 0$.

Then $P(n)$ is true for all elements in $\{n_{\sigma}, n_{i}, ...\}$.

$$
Ex: \tle f \t a_{n-1} = 1, a_{2} = 0, and a_{n} = 4 a_{n-1} - 4 a_{n-2}
$$

for $n \ge 3$. Prove $a_{n} = 2 \cdot (1 - \frac{n}{2})$ for $n \ge 1$.

$$
\frac{\beta_{\alpha_{5}}}{\beta_{\alpha_{5}}}
$$
\n
\n
$$
\frac{\beta_{\alpha_{5}}}{\beta_{\alpha_{5}}}
$$
\n
\n
$$
\frac{\beta_{\alpha_{5}}}{\beta_{\alpha_{1}}}
$$
\n
\n
$$
\frac{\beta_{\alpha_{5}}}{\beta_{\alpha
$$

Ind step

For $n = 2$ LHS $a_{2} = 0$ RHS $a_{2} = 2 \cdot (1 - \frac{2}{3})$ $-24.0 = 0$

For $n = k + 1$.

LHS = A
$$
\alpha_{(k+1)-1}
$$
 -A $\alpha_{(k+1)-2}$
\n= A $\alpha_{k} - A \alpha_{k-1}$
\n= $A \left[\alpha^{k} (1 - \frac{k}{2}) - \alpha^{k-1} (1 - \frac{k-1}{2}) \right]$
\n= $\alpha^{2} \cdot \alpha^{k} (1 - \frac{k}{2}) - \alpha^{2} \cdot \alpha^{k-1} (1 - \frac{k-1}{2})$
\n= $\alpha^{k+1} \cdot \alpha (1 - \frac{k}{2}) - \alpha^{k+1} (1 - \frac{k-1}{2})$
\n= $\alpha^{k+1} (1 - \frac{k+1}{2}) = RHS$