Section 4.2 Divisibility and Euclidean Algorithm (Part 1)

Divisibility

P 1. Determine if the number 369 divides 3. Is 369 divisible by 3? Yes

P 2. Let a and b be integers. Prove that if a + 5b is divisible by 7 then 10a + b is divisible be 7.

P 3. Suppose a, b, and c are integers such that $c \mid a$ and $c \mid b$. Show that $c \mid (ax + yb)$ for any integers x and y.

70 = 2.35 = 2.5.7 42 = 2.21 = 2.3.7

GCD

369= 3.123

P 4. What is the greatest common divisor of 70 and 42?

P 5. Suppose a is a nonzero integer. What is gcd(a, 0)DNE

P 6. Prove that integers a and b have at most one greatest common divisor.

P 7. What is the least common multiple of 7 and 13? **9**

```
a-odd
                                                   L
                            acd (a, at 2) =
P8. IS
           aez
                   then
                                                       a-even
                  Therefore LUG + D IS GIVISIDIE DY /.
```

P 3. Suppose a, b, and c are integers such that c | a and c | b. Show that c | (ax + yb) for any integers x and y.

a = ck, b = cj, for some integer k and j. Show that ax + yb is also divisible by c: c*k*x + c*j*y = c(kx + jy). Since k, j, x, and y are integers, kx + jy is also an integer, therefore $c \mid (ax + yb)$.

MX+Yb

Thm: For every integer
$$n$$
, $3 | n^{3} - n$.
 $pf:$
 $n^{3} - n = n(n^{2} - 1) = n(n - 1)(n + 1)$
 $3 | n \text{ or } 3 | n - 1 \text{ or } 3 | n + 1$
 $n = 3q + r$ where $0 \le r < 3 = 7$ $r < 20, 1, 23$
 $r = 0 = 7$ $n = 3q = 7$ $3 | n$
 $r = 1 = 7$ $n - 1 = 3q = 7$ $3 | n - 1$
 $r = 2 = 7$ $n - 2 = 3q = 7$ $n - 2 + 3 = 3q + 3$
 $= 7$ $n + 1 = 3(q + 1)$
 $= 7$ $3 | n + 1$

$$\frac{\text{Def:}}{\text{gcd}(a,b)}, \text{ is the largest common divisor,}$$

$$\underbrace{E_{x:}}_{qcd}(4,10) = 4$$
1) $4|4$ $4|10$ 4 is a common divisor
2) if $c|4$ and $c|10$ then $c|4$ or $c\leq 4$
 $4 = cK = 7$

ged
$$(4, 6) = 2$$

1) $2|4$ $2|6$ 2 is a common divisor
2) if $c|A$ and $c|6$ then $(c|2)$ or $c \leq 2$.

Def:
$$a, b \in \mathbb{Z}$$
 $b \neq 0$. The least common multiple
of a and b is the smallest positive multiple
of a and b. $lcm(a, b)$

$$E_{x:}$$
 $lcm(5,11) = 55$
5.11=55 and $11.5 = 55 = 7.55$ is a multiple of 5 e 11