Reading Questions 8

page 88 Example 24

page 88 Example 25

1. A one-to-one correspondence is a relation. ${\sf T}$

that is both 1-1 and onto.

between A and B. IAI=IBI

F

- 2. There is a one-to-one correspondence between the sets $\{a, b, x\}$ and $\{1, 2, 3, 4\}$
- 3. The sets $\{x \in \mathbb{R} | x^2 + 1 = 0\}$ and $\{\}$ have the same cardinality. \mathbf{T}
- 4. What is the set $2\mathbb{Z}$?

Des.

Section 3.3 One-to-One Correspondence and the Cardinality of Sets (Part 1)

Def. The cardinality of a set A, denoted by IAI,

have the same cardinality if the exists a 1-1 correspondence

is the number of elements in A. Sets A and B

- Ex: Let $A = \{1, 2\}$ and $B = \{a_1 b \}$. Then $f = \{(1, a), (2, b)\}$ is a 1-1 correspondence from A to B. Hence |A| = |B|.
- Def: The set A is a finite set if A is the empty set or there is a l-l correspondence from A to El, a, ..., ng for some positive integer n. Otherwise A is an infinite set.
 - Exi The set A = {a,b,c} is finite as a-71 b-72 c-73 is a 1-1 correspondence. The set N is infinite. 1{1,...,n}]=n IN|=n
- Def: A set A is countable if A is finite or there exists a 1-1 correspondence from A to N. Otherwise A is uncountable.
- Ex: A= E1,2,3,43 is countable as A is Sinite
 - $\frac{7}{2} \text{ is countable } f: \mathbb{Z} \xrightarrow{-7} \mathbb{N}$ $f(\alpha) = \begin{cases} 2\alpha+2 & \text{if } \alpha \ge 0\\ 2|\alpha|-1 & \text{if } \alpha < 0 \end{cases}$

Ex:
$$A = \{x_1, x_2, x_3, x_4, \dots, \}$$
 is countable
and
 $\{x_2, x_4, x_6, \dots, \} \in A$ and countable

Ex: NU 203 is countable
$$f: NU 203 \rightarrow N$$

Let S be a countable set. Then
SU ExS is countable where x is anything.

Thm:
Let
$$X, Y, Z$$
 be countable sets. Then
 $|(X \times Y) \times Z| = | \times (Y \times Z)|$

$$\begin{array}{l} (1, 4) \\ (1, 3) \\ (2, 3) \\ (1, 2) \\ (1, 2) \\ (1, 2) \\ (1, 1) \\ -7(2, 1) \\ (3, 1) \\ -7(4, 1) \end{array}$$
 f Z x Z -> Q
f(m,n) = $\frac{m}{n}$