Reading Questions 5

page 46 Problem 9

page 48 Example 12

- 1. The complement of a set is a set. \intercal
- 2. Let A and B be sets. Then $A \times B = B \times A$.
- 3. The complement of the set $\{1, 2, 3\}$ is the set $\mathbb{Z} \setminus \{1, 2, 3\}$.

Section 2.2 Operations on Sets (Part 1)

Notation

P 1. If the sets A and B do not have any common elements, how many elements does $A \cup B$ contain?

P 2. Let $A = \{a, b, c\}$ and $B = \{A, b, 3\}$. Find $A \cup B$ and $A \cap B$.

P 3. What is the complement of the set $\{1, 3, 9, 27\}$ with respect to the set

 $\{1, 2, 3, 4, 8, 9, 16, 27, 32, 81\}?$

P 4. What is the complement of the set of rational number with respect to the set of real numbers?

Venn Diagram

P 5. Make a Venn diagram for the sets $A = \{1, 2, 3\}, B = \{1, 4, 5\}, \text{ and } C = \{2, 5, 7\}.$

P 6. Let $A = \{1, 2\}$ and $B = \{x, y, z\}$. Find $B \times A$ and B^2 .

P 7. Prove that for any sets A and B, $(A \cap B)^c = A^c \cup B^c$.

Klovk Shee V 2 - 2 p 1
P 1. If the sets A and B do not have any common elements, how many elements does A u B contain? All the elements in both A and B
P 2. Let A = {a, b, c} and B = {A, b, 3}. Find A \cup B and A \cap B.
$\begin{array}{l} A \lor B = f a, b, c, A, 3 \\ A \uparrow B = f b \end{array}$

J. J

$$E_{X:} A = \{1, 2, 5\} \{4, 5, \pi, 2, 3\} = 0$$

$$A \cap B = \{2, 3\}$$

$$A \cup B = \{1, 2, 3, 4, 5, \pi\}$$

Ex: Let
$$A = \{1, 2, 3, 3\}$$
 and $U = \{2, 3, 5, 7, 1\}$
Here $A \subseteq U$. So $A^{c} = \{5, 7\}$.

Ex: Consider the following sets

$$A = \{1, 2, 4, 6\}$$
 $B = \{1, 3, 5, 6\}$

Notation :

$$A^{n} = A \times A \times A \times \dots \times A$$

n-times

 $\frac{E_{X:}}{A^{3} = \{(1,1,1), (1,1,2), (1,2,1), (1,2,2),$

$$(A \cup B)^{c} = A^{c} \cap B^{c}$$

(case i) Let $x \in (A \cup B)^{C}$, Hence $x \notin A \cup B$. Thus $x \notin A$ and $x \notin B$. Therefore $x \in A^{C}$ and $x \in B^{C}$ which implies $x \in A^{C} \cap B^{C}$. This shows $(A \cup B)^{C} \subseteq A^{C} \cap B^{C}$

(case 2) Leave it to you! A^c n B^c = (AUB)^c.