Reading Questions 4

page 39

- 1. The expression " $x \in A$ " means that x is an element of A. T
- 2. The set $\{x | x \in \mathbb{Z} \text{ and } x \ge 0\}$ contains all integers x such that x is greater than or equal to 0.
- 3. The set N represents the set $\{0, 1, 2, \dots\}$. \checkmark
- 4. Write out the elements of the set $\{a, b, \{a, b\}\}$.

Section 2.1 Sets (Part 1)

Sets Notation

P 1. Write down a set named A which contains two elements. Write down a set named B which contains three elements. Write down a set named C which contains the set A and contains elements from the set B.

P 2. How many elements does the set $\{1, \{\emptyset\}, \emptyset\}$ contain.

- **P** 3. Write out the elements of the following sets.
 - 1. $\{x|x^2 + 2x 3 = 0\}$ l, -3
 - 2. {{},1,{1,2,3}}
 ٤, ', ζ', ², ², ²
- **P** 4. List the elements of the set $\{1, \{a\}, a\} \setminus \{a\}$?

32

Subsets

P 5. Let $A = \{1, 2, 3, 4\}$. List all the subsets *B* of *A* such that $B \subseteq \{1, 2\}$.

Definition

The *power set* of the set A, denoted by $\mathcal{P}(A)$, is the set of all subsets of A.

P 6. Write the power set $\mathcal{P}(A)$ for the set $A = \{\{1, 2\}, 3, \{\}\}$.

P 7. How many elements are in the power set of a set containing exactly three elements?

2.1 Set

$$E_{x:}$$
 $\xi_{1,2,3}, \xi_{1,w}, \pi, x^{2}+x, \xi_{x}, \chi^{2}=1$
are sets.

subset S

Def: A set A is a subset of the set B, denoted
by
$$A \subseteq B$$
, if and only every element of A is in B.
In this case B is a superset of A, If A is not
a subset of B then we write $A \notin B$.

Ex
$${12,33 \le {1,2,3,43}}$$
 and
 ${3 \le {1,23}}$ ond
 ${1,23 \le {1,23}}$ and
 ${N \le Z \le Q \le R \le C}$

Defi The power set of the set
$$A$$
, denoted by $P(A)$, is the set of all subsets of A .

$$E_{X}$$
: Let $A = \{i_{1}, 2, 3\}$. Then
 $P(A) = \{\phi_{1}, \{i\}, \{a\}, \{i_{3}\}, \{i_{1}, a\}, \{i_{1}, 3\}, \{a, 3\}, \{i_{1}, 2, 3\}\}$

Assume E3 # A. Then there exists x E E3 such that x & A.

However this contradicts that E3 is empty. : E35A.

Def: A=B iff $A \leq B$ and $B \leq A$.

 $E_{X:}$ $\{1, 23 = \{2, 1\}$