Section 0.2 Proofs in Mathematics (Part 1)

Direct Proofs

P 1. Let x be an integer. Prove: If x is odd then x^2 is odd. Write a sketch of the proof first. Then write a formal proof.

x=2l+1.

P 2. Let x be an integer. Prove: If x is even then x + 2 is even.

				(Worksheet)
				P.I Leczbean integen
			Proof b	Prove: If x is odd then 2" is add.
			11001 0	Sketch: Pi x 15 odd = x = 20+1
_	-	-		$\Rightarrow \chi^{2} + (\lambda \ell + 1)^{2}$ $\Rightarrow \chi^{2} = 4\ell \ell^{2} + (\ell \ell + 1)$
Р	3.	Prove:	For all integers x , $x^2 - 3x + 9$ is or	$= - \frac{1}{2} = $
			8 , .	-) 2 = 2(22+22)+1
ъ		ъ		Proof. Lev 2 be odd. By definition, for some integer l.
Р	4.	Prove:	The integer x is odd if and only if	Thus $\chi^{2} = (2\ell_{1})^{2} = (4\ell_{1}^{2} + (4\ell_{2} + 1) - 2(2\ell_{1}^{2} + 2\ell_{2}^{2}) + 1$
				By definition, x' is odd. q.e.d.
р	Б	Drovo	For all integer $x, x^2 \ge x$.	
Г	э.	Flove:	For an integer $x, x \geq x$.	

Direct Proof P, -7 P2 -7 P3 -7 -- -7 PA

What I may assume

Guidelines for Proof Writin

Thm: Let x be an integer. If x is even then
$$x^2$$
 is even,
sketch: want to show
 $\frac{x}{WTS:} = \frac{3}{K}$ an integer s.t. $x^2 = 2K$

$$P_{1} = x \text{ is even} = 7 \qquad 2L = x$$
$$= 7 \qquad (2L)^{2} = x^{2}$$
$$= 7 \qquad 4L^{2} = x^{2}$$
$$= 7 \qquad a(aL^{2}) = x^{2}$$

Let x be even. By definition, for some integer L, x=2L. Hence $x^2 = (2l)^2 = 2(2l^3)$. Let $t = 2l^2$. Then $x^2 = 2t$. since t is an integer by definition x² is even. ged

Proof by Cases

Then: For all integers x, x + x is even.

Let x be a real number. If x is eninteger then x + x is even,

(case 1: x is even)
Assume x is even, Then
$$\exists l$$
 - an integer such that $x = \lambda l$. Hence
 $x^{2} + x = (\lambda l)^{2} + \lambda l = \lambda ((\lambda l)^{2}) + l$). Therefore $x^{2} + x$ is even.
(case $\lambda : x$ is odd)

Assume x is odd. Then $\exists l$ - an integer such that x=2l+1. Hence

$$x^{2}+x = (2l+1)^{2} + (2l+1)$$

= $4l^{2} + 4l + 1 + 2l + 1$
= $2(2l^{2} + 3l + 1)$

Therefore x2+x is even.