Section 0.1 Compound Statements (Part 1)

P 1. The truth value of a statement in an implication may be determined by the truth value
of the implication. Given that p and p — ¢ are true, determine the truth value of q.

P 2. Given that —p and p V ¢ are true, determine the truth value of q.

Section 0.1 Compound Statements (Part 2)

P 3. In some cases, proving an equivalent statement may be easier than proving the actual
statement. Determine if the following statements are equivalent.

~(PVQ) < ((-P)A(-Q))
P 4. Determine if the following statements are equivalent.
~(PAQ) < ((=P)V(-Q))
P 5. Use a truth table to show that [(P — Q) A (Q — R)] — (P — R).

Section 0.2 Proofs in Mathematics (Part 1)

P 6. Let x be an integer. Prove: If x is even then x + 2 is even.
P 7. Prove: For all integers x, 2 — 3z + 9 is odd.

P 8. Prove: The integer z is odd if and only if x2 is odd.

Section 0.2 Proofs in Mathematics (Part 2)

P 9. Prove: If 22 — 6x + 5 is even then z is odd.
P 10. Prove: No odd integer can be expressed as the sum of three even integers.

P 11. Prove or Disprove: For all positive integers z, if w is odd then % is odd.

Section 2.1 Sets (Part 1)

P 12. Write out the elements of the following sets.
1. {z|z? + 22 -3 =0}
2 {{}1,{1,2,3})
P 13. List the elements of the set {1,{a},a}\ {a}?
P 14. Let A= {1,2,3,4}. List all the subsets B of A such that B C {1,2}.
P 15. Write the power set P(A) for the set A = {{1,2},3,{}}.



Section 2.2 Operations on Sets (Part 1)

P 16. Let A= {a,b,c¢} and B ={A,),3}. Find AU B and AN B.

P 17. What is the complement of the set {1,3,9,27} with respect to the set
{1,2,3,4,8,9,16,27,32,81}?

P 18. Make a Venn diagram for the sets A = {1,2,3}, B ={1,4,5}, and C = {2,5,7}.

P 19. Let A= {1,2} and B = {x,y,2} . Find B x A and B?.

P 20. Prove that for any sets A and B, (AN B)¢ = A°U B°.

Section 3.1 Basic Terminology (Part 1)

P 21. Is the set {(1,2),(3,1),(2,1)} a function from the set {1,2,3} to the set {1,2,3}.

P 22. Let A = {1,2,3} and B = {a,b,c,d}. Give an example of a relation from A to B
containing exactly three elements such that the relation is not a function from A to B.

P 23. Let A = {a,b,¢,d} and B = {z,y,z}. Then f{(a,y),(b,2),(c,y),(d,2)} is a function
from A to B. Determine dom f and rng f.

P 24. Let A ={w,xz,y,z} and B = {r, s,t}. Give an example of a function f : A — B that is
neither one-to-one nor onto.

P 25. Show that the function f = {(x1,22) |#? = 22} from N to N is one-to-one. Is the function
onto?

P 26. Let f = {(z,y)|y = 3x + 5} be the function from N to N. Show that f a bijective.

Section 3.2 Inverse and Composition (Part 1)
P 27. Find the inverse relation of the following relation.
R={(1,8),(3,3),(4,3),(2,1),(5,2)}

P 28. Determine if the following functions from the set {1,2,3,4,5} itself have an inverse. If
so find the inverse.

[= {(1’3)’(374)v(4a3)7(2’ 1))(572)} and g = {(172)’(351)7(274)7(473)7(5’5)}

P 29. Let A = {1,2,3,4}, B = {a,b,c,d} and C = {r,s,t,u,v} and define the functions
f:A—= Bandg: B— C by

[= {(13 b)a (27 d)a (3a a)v (43 a)} and g = {(avu)a (ba T’), (Ca T)v (da 5)}
Determine g o f and (go f)(1).
P 30. Let f: A— Aand g: A — A be functions. Show that (fog)~t =g 1o f~L

P 31. Let f: A — B and g : B — C be functions. Prove that if g o f is one-to-one and f is
onto then g is one-to-one.



Section 3.3 One-to-One Correspondence and the
Cardinality of Sets (Part 1)

P 32. Is there a one-to-one correspondence from {1,2,3,...,n} to the empty set? Is the set
finite or infinite?

P 33. Show that the set {z,y, 2,1} is a finite set.
P 34. Show that the set N U {0} is a countable set.

P 35. Determine if the set {3"|n € Z} is countable.
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