Section 0.1 Compound Statements (Part 1)

P 1. The truth value of a statement in an implication may be determined by the truth value of the implication. Given that p and $p \rightarrow q$ are true, determine the truth value of q.

P 2. Given that $\neg p$ and $p \lor q$ are true, determine the truth value of q.

Section 0.1 Compound Statements (Part 2)

P 3. In some cases, proving an equivalent statement may be easier than proving the actual statement. Determine if the following statements are equivalent.

$$\neg (P \lor Q) \iff ((\neg P) \land (\neg Q))$$

P 4. Determine if the following statements are equivalent.

$$\neg (P \land Q) \iff ((\neg P) \lor (\neg Q))$$

P 5. Use a truth table to show that $[(P \to Q) \land (Q \to R)] \to (P \to R)$.

Section 0.2 Proofs in Mathematics (Part 1)

- **P 6.** Let x be an integer. Prove: If x is even then x + 2 is even.
- **P** 7. Prove: For all integers x, $x^2 3x + 9$ is odd.
- **P 8.** Prove: The integer x is odd if and only if x^2 is odd.

Section 0.2 Proofs in Mathematics (Part 2)

- **P 9.** Prove: If $x^2 6x + 5$ is even then x is odd.
- P 10. Prove: No odd integer can be expressed as the sum of three even integers.
- **P 11.** Prove or Disprove: For all positive integers x, if $\frac{x(x+1)}{2}$ is odd then $\frac{(x+1)(x+2)}{2}$ is odd.

Section 2.1 Sets (Part 1)

- **P 12.** Write out the elements of the following sets.
 - 1. $\{x|x^2 + 2x 3 = 0\}$
 - 2. $\{\{\}, 1, \{1, 2, 3\}\}$
- **P 13.** List the elements of the set $\{1, \{a\}, a\} \setminus \{a\}$?
- **P** 14. Let $A = \{1, 2, 3, 4\}$. List all the subsets *B* of *A* such that $B \subseteq \{1, 2\}$.
- **P 15.** Write the power set $\mathcal{P}(A)$ for the set $A = \{\{1, 2\}, 3, \{\}\}$.

Section 2.2 Operations on Sets (Part 1)

P 16. Let $A = \{a, b, c\}$ and $B = \{A, b, 3\}$. Find $A \cup B$ and $A \cap B$.

P 17. What is the complement of the set $\{1, 3, 9, 27\}$ with respect to the set

 $\{1, 2, 3, 4, 8, 9, 16, 27, 32, 81\}?$

P 18. Make a Venn diagram for the sets $A = \{1, 2, 3\}, B = \{1, 4, 5\}, \text{ and } C = \{2, 5, 7\}.$

P 19. Let $A = \{1, 2\}$ and $B = \{x, y, z\}$. Find $B \times A$ and B^2 .

P 20. Prove that for any sets A and B, $(A \cap B)^c = A^c \cup B^c$.

Section 3.1 Basic Terminology (Part 1)

P 21. Is the set $\{(1,2), (3,1), (2,1)\}$ a function from the set $\{1,2,3\}$ to the set $\{1,2,3\}$.

P 22. Let $A = \{1, 2, 3\}$ and $B = \{a, b, c, d\}$. Give an example of a relation from A to B containing exactly three elements such that the relation is not a function from A to B.

P 23. Let $A = \{a, b, c, d\}$ and $B = \{x, y, z\}$. Then $f\{(a, y), (b, z), (c, y), (d, z)\}$ is a function from A to B. Determine dom f and rng f.

P 24. Let $A = \{w, x, y, z\}$ and $B = \{r, s, t\}$. Give an example of a function $f : A \to B$ that is neither one-to-one nor onto.

P 25. Show that the function $f = \{(x_1, x_2) | x_1^2 = x_2\}$ from \mathbb{N} to \mathbb{N} is one-to-one. Is the function onto?

P 26. Let $f = \{(x, y) | y = 3x + 5\}$ be the function from \mathbb{N} to \mathbb{N} . Show that f a bijective.

Section 3.2 Inverse and Composition (Part 1)

P 27. Find the inverse relation of the following relation.

$$R = \{(1,8), (3,3), (4,3), (2,1), (5,2)\}$$

P 28. Determine if the following functions from the set $\{1, 2, 3, 4, 5\}$ itself have an inverse. If so find the inverse.

 $f = \{(1,3), (3,4), (4,3), (2,1), (5,2)\}$ and $g = \{(1,2), (3,1), (2,4), (4,3), (5,5)\}$

P 29. Let $A = \{1, 2, 3, 4\}, B = \{a, b, c, d\}$ and $C = \{r, s, t, u, v\}$ and define the functions $f : A \to B$ and $g : B \to C$ by

$$f = \{(1,b), (2,d), (3,a), (4,a)\} \text{ and } g = \{(a,u), (b,r), (c,r), (d,s)\}.$$

Determine $g \circ f$ and $(g \circ f)(1)$.

P 30. Let $f: A \to A$ and $g: A \to A$ be functions. Show that $(f \circ g)^{-1} = g^{-1} \circ f^{-1}$.

P 31. Let $f : A \to B$ and $g : B \to C$ be functions. Prove that if $g \circ f$ is one-to-one and f is onto then g is one-to-one.

Section 3.3 One-to-One Correspondence and the Cardinality of Sets (Part 1)

P 32. Is there a one-to-one correspondence from $\{1, 2, 3, ..., n\}$ to the empty set? Is the set finite or infinite?

- **P 33.** Show that the set $\{x, y, z, 1\}$ is a finite set.
- **P 34.** Show that the set $\mathbb{N} \cup \{0\}$ is a countable set.
- **P 35.** Determine if the set $\{3^n | n \in \mathbb{Z}\}$ is countable.