Reading Questions 6

reading: Section 9.4 : Subsection - Absolute and Conditional Convergence

1. The series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$ converges conditionally. 2. A series $\sum_{n=1}^{\infty} a_n$ converges absolutely if $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} |a_n|$ both converge.

Section 9.4 Tests for Convergence (Part 4)

Approximation

	istimate the error in approximating $\geq (-1)$ $(\frac{1}{3})$ by the prior in them $m = 1$
	$a_{\mathfrak{F}} = \left(\frac{\ell}{3}\right)^{\mathfrak{F}-\ell} = \left(\frac{\ell}{3}\right)^{\mathfrak{f}} = -\frac{\ell}{\mathfrak{g}_{\mathfrak{f}}}$
	S-3 _a < a ₅ by the phenome
buck	$\sum_{n=1}^{\infty} \left(\left(\frac{1}{3} \right)^{n-1} = \frac{a}{4-n} = \frac{\lambda}{4-\left(\frac{1}{3} \right)} = \frac{3}{4}$
	$S_{q} = \sum_{n=A}^{Q} \left(-\frac{1}{n}\right)^{n-1} = \frac{dD}{dt}$
	$ S-S_q = \frac{3}{4} - \frac{dg}{27} = \frac{1}{86} < \frac{1}{86} = \sqrt{\frac{1}{86}}$

,6

Theorem

Let S_n be the *nth* partial sum of the series $\sum_{n=1}^{\infty} (-1)^{n-1} a_n$ and let $S = \lim_{n \to \infty} S_n$. Suppose $0 < a_{n+1} < a_n$ for all n and $\lim_{n \to \infty} a_n = 0$. Then $|S - S_n| < a_{n+1}$.

P 1. Estimate the error in approximating the sum of the series $\sum_{n=1}^{\infty} (-1)^{n-1} (\frac{1}{3})^{n-1}$ by the sum of the first 4 terms. Check your answer. **P 2.** Let $S = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2}$. Give a number k such that $|S - \frac{31}{36}| < k$.

Absolute Convergence

Definition

The series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent if both $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} |a_n|$ converge.

Definition

The series $\sum_{n=1}^{\infty} a_n$ is conditionally convergent if $\sum_{n=1}^{\infty} a_n$ converges but $\sum_{n=1}^{\infty} |a_n|$ diverges.

P 3. Determine if the series $\sum_{n=1}^{\infty} (-1)^{n-1} (\frac{2}{3})^n$ is absolutely or conditionally convergent.

P 4. Determine if the series $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{\sqrt{n}}$ is absolutely or conditionally convergent.

9,4 part 4 Approximations $S_{i=0}^{z_{ai}}$ n^{-1} Suppose $\lim_{n \to \infty} S_n = S$ $S_n = \sum_{i=0}^{r_{ai}} S_n = \sum$

Thm: Let Sn be the nth partial sum of Z[-1) an and

- let s=lim Sn. Suppose OKanti Kan for all n n700
- and $\lim_{n\to\infty} a_n = 0$. Then $|S S_n| < a_{n+1}$,

Ex: Estimate the error in approximating
$$\sum_{n=1}^{\infty} (-1)^{n-1} (\frac{1}{2})^{n-1}$$

by the sum of the first 4 terms. Here $a_s = (\frac{1}{2})^{s-1}$
exact appr.
 $|s-s_a| < a_s$ by the previous

Checki:

$$\frac{\zeta}{2} \left(-\frac{1}{2}\right)^{n-1} = \frac{1}{1-(\frac{1}{2})} = \frac{2}{3}$$

 $S_{4} = \frac{2}{2} \left(-\frac{1}{2}\right)^{n-1} = \frac{5}{8} check$

 $S_{4} = \frac{2}{2} \left(-\frac{1}{2}\right)^{n-1} = \frac{5}{8} check$

 $S_{4} = \frac{1}{2} \left(-\frac{1}{2}\right)^{n-1} = \frac{5}{8} check$

 $S_{4} = \frac{1}{2} \left(-\frac{1}{2}\right)^{n-1} = \frac{1}{2} \left(-\frac{1}{2}\right)^{n-$

27505

Ex:
$$(-1)^{n-1} \frac{1}{n^2}$$
 converges absolutely as both
 $\leq \frac{1}{n^2}$ and $\leq (-1)^{n-1} \frac{1}{n^2}$ converge
 p -series alt series test